Abstract:
Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
Abstract:
Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
Abstract:
Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
Abstract:
Embodiments are directed to a method and charged particle beam system for forming views for an electron microscope. Embodiments include milling a first surface at least in the local area of a feature of interest using an ion beam directed at a first angle to make the first surface at least in the local area of the feature of interest substantially planar, wherein the first angle between the ion beam and the first surface is equal to or less than ten degrees; subsequent to milling the first surface, milling the sample using the ion beam directed at a second angle to expose a second surface, the second surface comprising a cross-section of the feature of interest; and forming an image of the second surface by directing an electron beam to the second surface and detecting the interaction of the electron beam with the second surface.
Abstract:
A method for TEM sample preparation and analysis that can be used in a FIB-SEM system without re-welds, unloads, user handling of the lamella, or a motorized flip stage. The method allows a dual beam FIB-SEM system with a typical tilt stage to be used to extract a sample to from a substrate, mount the sample onto a TEM sample holder capable of tilting, thin the sample using FIB milling, and rotate the sample so that the sample face is perpendicular to an electron column for STEM imaging.
Abstract:
Curtaining artifacts on high aspect ratio features are reduced by reducing the distance between a protective layer and feature of interest. For example, the ion beam can mill at an angle to the work piece surface to create a sloped surface. A protective layer is deposited onto the sloped surface, and the ion beam mills through the protective layer to expose the feature of interest for analysis. The sloped mill positions the protective layer close to the feature of interest to reduce curtaining.
Abstract:
A method and apparatus for use in surface delayering for fault isolation and defect localization of a sample work piece is provided. More particularly, a method and apparatus for mechanically peeling of one or more layers from the sample in a rapid, controlled, and accurate manner is provided. A programmable actuator includes a delayering probe tip with a cutting edge that is shaped to quickly and accurately peel away a layer of material from a sample. The cutting face of the delayering probe tip is configured so that each peeling step peels away an area of material having a linear dimension substantially equal to the linear dimension of the delayering probe tip cutting face. The surface delayering may take place inside a vacuum chamber so that the target area of the sample can be observed in-situ with FIB/SEM imaging.
Abstract:
A method and system for exposing a portion of a structure in a sample for observation in a charged particle beam system, including extracting a sample from a bulk sample; determining an orientation of the sample that reduces curtaining; mounting the sample to a holder in the charged particle beam system so that the holder orients the sample in an orientation that reduces curtaining when the sample is milled to expose the structure; exposing the structure by milling the sample in a direction that reduces curtaining; and imaging the structure.
Abstract:
Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
Abstract:
A TEM grid provides posts having steps, the steps increasing the number of samples that can be attached to the grid. In some embodiments, each post includes a one sided stair step configuration. A method of extracting multiple samples includes extracting samples and attaching the samples to the different stair steps on the posts.