Abstract:
An electrophysiology catheter, e.g., a coronary sinus catheter, for insertion into a cardiac vessel, such as the coronary sinus, includes a handle and a catheter shaft coupled at one end to the handle. The catheter shaft has a distal end and an anchor is associated with the catheter shaft and is movable between a deployed position and a collapsed position. In the deployed position, the anchor extends radially outward from an outer surface of the catheter shaft for contacting a wall and temporarily anchoring the catheter shaft within the coronary sinus. The catheter also includes an actuator for causing deployment and collapsing of the anchor upon manipulation of the actuator.
Abstract:
Methods and apparatuses for manipulating an elongated flexible shaft of a catheter provide case and reliability of positioning electrodes against or near tissue. Dual-bend flexible distal tips (30) may be used in combination with flat wires. In some embodiments, flat wires which are free to rotate upon initial bending of shaft segments are employed. In some embodiments, one or more transition segments (48) are used to relocate the satellite lumen-to-main lumen transition of pull wires (42, 40) away from a change in shaft stiffness.
Abstract:
A handle for use with a catheter, the handle including a housing, a cable, and a guide. The housing has a proximal end, a distal end, and a longitudinal axis that extends from the proximal end of the housing to the distal end of the housing. The cable is disposed in the housing and extends through the proximal end of the housing. A portion of the cable that is disposed in the housing is movable, under compression, in a first direction that is substantially aligned with the longitudinal axis of the housing. The guide is disposed in the housing and is adapted to prevent the portion of the cable from moving in a second direction that is transverse to the first direction when the portion of the cable is moved in the first direction. The handle is suitable for use with an electrophysiology catheter having an elongated shaft.
Abstract:
An electrophysiology catheter and method of use for mapping and ablation procedures. The catheter includes a braided conductive member at its distal end that can be radially expanded. The catheter can be used in endocardial and epicardial mapping and ablation procedures.
Abstract:
Catheters for mapping and/or ablation are disclosed. In one embodiment, the catheter comprises a handle, a flexible shaft, a tip assembly, and a cable. The handle includes an actuator and is attached, at its distal end, to the proximal end of the flexible shaft. The flexible shaft has a longitudinal axis that extends along a length of the shaft. The proximal end of the tip assembly is attached to the distal end of the shaft and includes a fixed bend of approximatley ninety degrees relative to the longitudinal axis of the shaft. The distal end of the tip assembly includes an arcuate curve having a diameter. The arcuate curve is oriented in a plane that is approximatley perpendicular to the longitudinal axis of the shaft. The cable is attached to the actuator and the distal end of the tip assembly, and extends through the shaft. The cable is adapted to change the diameter of the arcuate curve in response to movement of the actuator.
Abstract:
A magnetic head cluster is provided along with a method of making a magnetic head cluster. The magnetic head cluster comprises a substrate having a plurality of magnetoresistive (MR) read and inductive magnetic write transducers and a plurality of terminals formed thereon. A plurality of lapping guides are also provided on the substrate between adjacent transducers.
Abstract:
An electrophysiology catheter and method of use for mapping and ablation procedures. The catheter includes a braided conductive member at its distal end that can be radially expanded. The catheter can be used in endocardial and epicardial mapping and ablation procedures.
Abstract:
A catheter includes a pull wire which extends through two different lumen and attaches to the distal end of the catheter at an off-axis location. By tensioning the pull wire, the catheter can assume various complex curves, depending on the respective lumen through which the pull wire passes.
Abstract:
A continuously generated alkyleneamines produces composition comprising, based on 100% of the moles of the composition and exclusive of any MEA and water present,a) about 50 to about 90 mole % AEEA,b) less than about 3 mole % EDA but more than 0.01 mole % EDA,c) less than about 2 mole % DETA but more than 0.01 mole % DETA,d) about 5 to about 18 mole % of the combination of PIP, AEP and HEP,e) about 5 to about 20 mole % of one or more of TETAs and TEPAs,f) less than about 1 mole % of other polyalkylene polyamines,g) a mole ratio of AEEA to the combination of PIP, AEP, HEP, DETA and EDA is greater than about 2.5,h) an AEEA to EDA mole ratio greater than about 22 andi) an AEEA to PIP mole ratio greater than about 7;and a process of manufacturing the same, which comprises feeding hydrogen and MEA to a reaction zone containing a fixed bed of a reductive amination catalyst, wherein the hydrogen comprises about 20 to about 80 mole percent of the feed in the reaction zone, the temperature of the reaction zone is about 120.degree. C. to about 300.degree. C., the pressure of the reaction zone is about 200 to about 1200 psig., the conversion of MEA is about 15 to about 42 weight percent, and recovering said producers composition from the reaction zone.
Abstract:
A continuous process is provided for preparing alkanolamines having a high yield of monoalkanolamine, which comprises continuously reacting a flowing stream of a homogeneous mixture of an alkylene oxide having from two to four carbon atoms and ammonia in a molar ratio of ammonia to alkylene oxide within the range from about 15:1 to about 50:1 at temperatures above the critical temperature of the mixture and at pressures above the critical pressure of the mixture and maintaining the mixture in a single phase having a density of at least 15 lbs./cu.ft. for the time necessary to form an alkanolamine product mixture containing at least about 65% by weight monoalkanolamine.