Abstract:
The present disclosure generally relates to a dual free layer (DFL) two dimensional magnetic recording (TDMR) read head, and a method of forming thereof. The read head comprises a lower sensor, middle shields disposed on the lower sensor, and an upper sensor disposed on the middle shields. After the lower reader is formed, a dielectric layer is deposited around an outer perimeter of the lower shield. Portions of the dielectric layer are ion milled such that the remaining portions form a substantially flat layer. Another embodiment includes a deposition of a TaOx layer on the dielectric layer, where x is a numeral. Portions of the dielectric layer and the TaOx layer are then ion milled such that the remaining portions of the TaOx layer and the dielectric layer collectively form a substantially planar layer. The middle shields are formed over the lower reader and are substantially planar.
Abstract:
An apparatus according to one embodiment includes an array of magnetic read transducers each having a current-perpendicular-to-plane sensor, magnetic shields on opposite sides of the sensor in an intended direction of media travel thereacross, and a stabilizing layered structure between at least one of the magnetic shields and the sensor. The stabilizing layered structure has an antiferromagnetic layer, a first ferromagnetic layer adjacent the antiferromagnetic layer, and a second ferromagnetic layer. The antiferromagnetic layer pins a magnetization direction in the first ferromagnetic layer along an antiferromagnetic polarized direction of the antiferromagnetic layer. An antiparallel coupling layer is positioned between the ferromagnetic layers such that a magnetization direction in the second ferromagnetic layer is opposite the magnetization direction in the first ferromagnetic layer.
Abstract:
A magnetic read apparatus includes a first sensor, a shield layer, an insulating layer, a shield structure and a second sensor. The shield layer is between the first sensor and the insulating layer. The shield structure is in the down track direction from the insulating layer. The shield structure includes a magnetic seed structure, a shield pinning structure and a shield reference structure. The magnetic seed structure adjoins the shield pinning structure. The shield pinning structure is between the shield reference structure and the magnetic seed structure. The second sensor includes a free layer and a nonmagnetic spacer layer between the shield reference structure and the free layer. The shield reference structure is between the shield pinning structure and the nonmagnetic spacer layer. The shield pinning structure includes a pinned magnetic moment. The shield reference structure includes another magnetic moment weakly coupled with the pinned magnetic moment.
Abstract:
In various embodiments, a read assembly for reading a dual-layered medium may be provided. The dual-layered medium may include a servo layer and a data layer over the servo layer. The read assembly may include a data read head configured to read the data layer. The read assembly may also include a servo read head configured to read the servo layer.
Abstract:
In one embodiment, a magnetic head includes a lower magnetic shield layer positioned at a media-facing surface, a pinned layer positioned above the lower magnetic shield layer at the media-facing surface, at least two MR elements extending in an element height direction by a first length positioned above the pinned layer and separated in a cross-track direction by an inner layer, bias layers extending in the element height direction by a second length positioned on outside edges of the MR elements and the pinned layer, and current paths positioned above and in electrical communication with the bias layers on either side of the inner layer, each current path extending in the element height direction away from the media-facing surface by a third length.
Abstract:
An apparatus according to one embodiment includes a magnetic head having multiple magnetic transducers, the transducers including read sensors. The read sensors are of at least two differing types selected from a group consisting of tunneling magnetoresistance (TMR), giant magnetoresistance (GMR), anisotropic magnetoresistance (AMR), and inductive sensors.
Abstract:
A method and system provide a magnetic transducer having an air-bearing surface (ABS). The method includes providing a first shield, a first read sensor, an antiferromagnetically coupled (AFC) shield that includes an antiferromagnet, a second read sensor and a second shield. The read sensors are between the first and second shields. The AFC shield is between the read sensors. An optional anneal for the first shield is in a magnetic field at a first angle from the ABS. Anneals for the first and second read sensors are in magnetic fields in desired first and second read sensor bias directions. The AFC shield anneal is in a magnetic field at a third angle from the ABS. The second shield anneal is in a magnetic field at a fifth angle from the ABS. The fifth angle is selected based on a thickness and a desired AFC shield bias direction for the antiferromagnet.
Abstract:
A read head includes a bottom shield configured as a bottom electrical contact. A bottom reader stack is disposed on and electrically coupled to the bottom shield. A middle electrical contact is electrically coupled to a top layer of the bottom reader stack. A top reader stack is disposed on the bottom reader stack. A bottom layer of the top reader stack electrically coupled to the middle electrical contact. A top shield is configured as a top electrical contact. The top shield is disposed on and electrically coupled to the top reader stack.
Abstract:
Apparatus for sensing data from a magnetic recording medium using a multi-sensor reader with different readback sensitivities. In accordance with some embodiments, a data transducing head has first and second read sensors. The first read sensor is optimized for reading data and the second read sensor is optimized to detect thermal asperity (TA) events.
Abstract:
An apparatus for magnetic recording having a barrier layer. One embodiment includes a magnetic head having an array of sensors, each of the sensors having a media facing surface. A barrier layer is positioned above at least the media facing surfaces of the sensors. The barrier layer includes at least one at least partially polycrystalline layer.