Abstract:
A semiconductor integrated circuit device includes a semiconductor substrate, an element isolation region, a first interconnection, a second interconnection, and a memory cell unit connected between a corresponding one of the first interconnection and a second interconnection. The memory cell unit includes two selection transistors and memory cell transistors of not larger than two. The memory cell transistors are connected between the two selection transistors. The memory cell transistor has a charge storage layer whose side surface lies in the same plane or in substantially the same plane as the side surface of the element isolation regions.
Abstract:
A semiconductor memory has a memory cell matrix including a plurality of first and second cell columns alternately arranged along a row-direction, each of cell columns is implemented by a plurality of memory cell transistors, and peripheral circuits configured to drive the memory cell matrix and to read information from the memory cell matrix. The peripheral circuit encompasses (a) a leading program circuit configured to write first data into memory cell transistors in the first cell columns, (b) a lagging program circuit configured to write second data into memory cell transistors in the second cell columns after the first data are written, and (c) a voltage controller configured to control variation of threshold voltages for the memory cell transistors of the first cell columns.
Abstract:
A semiconductor device of a selective gate region having a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating film, and an element isolating region including an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer. The element isolating region isolates an element region and is self-aligned with the first electrode layer, a second insulating film is formed on the first electrode layer and the element isolating region, and an open portion exposes a surface of the first electrode layer and is formed in the second insulating film. A second electrode layer is formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electrically connected to the first electrode layer via the open portion.
Abstract:
An element isolating region for separating an element region of a semiconductor layer is formed in a peripheral circuit section of a semiconductor memory device, and a first conductive layer is formed with the element region with a first insulating film interposed therebetween. A second conductive layer is formed on the first conductive layer to extend into the element isolating region. A surface of that section of the second conductive layer which is positioned within the element isolating region is exposed, and a third conductive layer is formed on the second conductive layer with a second insulating film interposed therebetween. Further, a contact is electrically connected to an exposed surface of the second conductive layer.
Abstract:
A memory cell has a selection transistor constituted of an MOS transistor having a gate electrode and a cell transistor constituted of an MOS transistor having the same polarity as the selection transistor, in such a configuration that these two transistors are connected in series. A bit line is connected to a drain region of the selection transistor and a word line is connected to the gate electrode thereof. A gate electrode of the cell transistor is not electrically connected anywhere so as to be in a floating potential state, while a drain region thereof is connected to a source region of the selection transistor. A source line is connected to a source region of the cell transistor.
Abstract:
A semiconductor integrated circuit device includes a semiconductor substrate, an element isolation region, a first interconnection, a second interconnection, and a memory cell unit connected between a corresponding one of the first interconnection and a second interconnection. The memory cell unit includes two selection transistors and memory cell transistors of not larger than two. The memory cell transistors are connected between the two selection transistors. The memory cell transistor has a charge storage layer whose side surface lies in the same plane or in substantially the same plane as the side surface of the element isolation regions.
Abstract:
A non-volatile semiconductor memory device having a write mode in which wrong writing is prevented surely. The storage device comprises a NAND cell comprising a plurality of memory transistors connected in series and also connected at one end via a select gate transistor CG1 to a bit line BL and at the other end via a select gate transistor SG2 to a common source line SL. A write voltage Vpgm is applied to a control gate of a selected memory transistor in the NAND cell and Vss is applied to the controls gates of non-select memory transistors each adjacent to the selected memory transistor to thereby write data into the select memory transistor. When a second memory transistor from the bit line BL side is selected in the writing operation, a medium voltage Vpass is applied to the control gate of a first non-selected memory transistor from the bit line BL side, and a medium voltage Vpass is applied to the control gates of third and subsequent non-selected memory transistors from the bit line BL side.
Abstract:
A nonvolatile semiconductor memory which is configured to include a plurality of word lines disposed in a row direction; a plurality of bit lines disposed in a column direction perpendicular to the word lines; memory cell transistors having a charge storage layer, provided in the column direction and an electronic storage condition of the memory cell transistor configured to be controlled by one of the plurality of the word lines connected to the memory cell; a plurality of first select transistors, each including a gate electrode, selecting the memory cell transistors provided in the column direction, arranged in the column direction and adjacent to the memory cell transistors at a first end of the memory cell transistors; and a first select gate line connected to each of the gate electrodes of the first select transistors.
Abstract:
A semiconductor device exhibits a stable driving force and high performance reliability. The semiconductor device has at least one transistor having a gate insulating film formed on a element region in a semiconductor substrate, a gate electrode formed on the gate insulating film, and a diffused layer in element regions on both sides of the gate electrode. The device also has a barrier insulating film formed so as to cover the transistor and the diffused layer. The height from a surface of the semiconductor substrate to the barrier insulating film is greater than the height from the surface, of the interface between the gate insulating film and the gate electrode.
Abstract:
A semiconductor device exhibits a stable driving force and high performance reliability. The semiconductor device has at least one transistor having a gate insulating film formed on a element region in a semiconductor substrate, a gate electrode formed on the gate insulating film, and a diffused layer in element regions on both sides of the gate electrode. The device also has a barrier insulating film formed so as to cover the transistor and the diffused layer. The height from a surface of the semiconductor substrate to the barrier insulating film is greater than the height from the surface, of the interface between the gate insulating film and the gate electrode.