Abstract:
A power aware front-end unit for a processor may include a UOP cache that disables other circuitry within the front-end unit. In an embodiment, a front-end unit may disable instruction synchronization circuitry, instruction decode circuitry and, optionally, instruction fetch circuitry while instruction look-ups are underway in both a block cache and an instruction cache. If the instruction look-up indicates a miss, the disabled circuitry thereafter may be enabled.
Abstract:
In one embodiment, logic is provided to receive and execute a mask move instruction to transfer a vector data element including a plurality of packed data elements from a source location to a destination location, subject to mask information for the instruction, such that only portions of the plurality of packed data elements are transferred to the destination location. Other embodiments are described and claimed.
Abstract:
A system, techniques and apparatus are described for decoding an instruction in an a variable-length instruction set. An instruction encoding is described, in which legacy, present, and future instruction set extensions are supported, and increased functionality is provided, without expanding the code size and, in some cases, reducing the code size.
Abstract:
In one embodiment, logic is provided to receive and execute a mask move instruction to transfer a vector data element including a plurality of packed data elements from a source location to a destination location, subject to mask information for the instruction. Other embodiments are described and claimed.
Abstract:
A technique to accelerate range detection in a spline calcuation. In one embodiment, an instruction and corresponding logic are provided to perform range detection within a computer or processor.
Abstract:
A power aware front-end unit for a processor may include a UOP cache that disables other circuitry within the front-end unit. In an embodiment, a front-end unit may disable instruction synchronization circuitry, instruction decode circuitry and, optionally, instruction fetch circuitry while instruction look-ups are underway in both a block cache and an instruction cache. If the instruction look-up indicates a miss, the disabled circuitry thereafter may be enabled.
Abstract:
A power aware front-end unit for a processor may include a UOP cache that disables other circuitry within the front-end unit. In an embodiment, a front-end unit may disable instruction synchronization circuitry, instruction decode circuitry and, optionally, instruction fetch circuitry while instruction look-ups are underway in both a block cache and an instruction cache. If the instruction look-up indicates a miss, the disabled circuitry thereafter may be enabled.
Abstract:
Distribution of processing activity across processing hardware based on power consumption and/or thermal considerations. One embodiment includes a plurality of processing units and a monitor to obtain monitor (e.g., power consumption, or temperature or some combination thereof) values from the processing units. The monitor transfers a process from one processing unit to another in response to the monitor values from the processing units.
Abstract:
A system and corresponding method use a PAUSE instruction as a low power hint in a single threaded or multithreaded environment using “processor slow mode.” One embodiment actually lowers the frequency of the processor clock. Another embodiment virtually lowers the frequency of the processor clock by gating M clock cycles out of every N clock cycles. When all threads have issued a PAUSE instruction, the processor enters slow mode and remains there for a while. After this while, the processor returns to normal mode. Alternatively, an event, such as an interrupt or an exception, can cause the processor to return to normal mode from slow mode.