摘要:
A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.
摘要:
An illuminator for a lithographic apparatus, the illuminator including an illumination mode defining element and a plurality of polarization modifiers, the polarization modifiers being moveable into or out of partial intersection with a radiation beam having an angular and spatial distribution as governed by an illumination mode defining element.
摘要:
A method of manufacturing an optical component comprising a substrate and a mounting frame with plural contact portions disposed at predetermined distances from each other is provided. The method comprises providing a measuring frame separate from the mounting frame for mounting the substrate, which measuring frame comprises a number of contact portions equal to a number of the contact portions of the mounting frame, wherein respective distances between the contact portions of the measuring frame are substantially equal to the corresponding distances between those of the mounting frame, measuring a shape of the optical surface of the substrate, while the substrate is mounted on the measuring frame, and mounting the substrate on the mounting frame such that the contact portions of the mounting frame are attached to the substrate at regions which are substantially the same as contact regions at which the substrate was attached to the measuring frame.
摘要:
A system and method for controlling exposure in a lithographic apparatus are disclosed. The system can have adjustable optical elements capable of being decentered to adjust an illumination distribution. Embodiments include a lithographic apparatus structure configured to allow for spatial dose control, for example as a function of X and Y in response to spatial variation in polarization state and birefringence of optical components of the lithographic system.
摘要:
A method for producing microstructured components in a microlithographic projection exposure apparatus is disclosed. The method includes imaging a pattern of structures into an image plane of a projection objective. The dose distribution of projection light in the image plane can be influenced so that the image of a structure is at least essentially independent of the topography of structures which lie inside a region surrounding the structure.
摘要:
In order to optimize the image properties of several optical elements of which at least one is moved relative to at least one stationary optical element, the overall image defect resulting from the interaction of all optical elements is first of all measured. This is represented as a linear combination of the base functions of an orthogonal function set. The movable element is then moved to a new measurement position and the overall image defect is measured once again. After the linear combination representation of the new overall image defect, the image defects of the movable element and of the stationary element are calculated from the data thereby obtained. With only one movable optical element a target position in which the overall image defect is minimized can be directly calculated and adjusted there from. If several movable optical elements are available, methods are given for the efficient determination of the respective target position.
摘要:
A method of manufacturing an optical component comprising a substrate and a mounting frame with plural contact portions disposed at predetermined distances from each other is provided. The method comprises providing a measuring frame separate from the mounting frame for mounting the substrate, which measuring frame comprises a number of contact portions equal to a number of the contact portions of the mounting frame, wherein respective distances between the contact portions of the measuring frame are substantially equal to the corresponding distances between those of the mounting frame, measuring a shape of the optical surface of the substrate, while the substrate is mounted on the measuring frame, and mounting the substrate on the mounting frame such that the contact portions of the mounting frame are attached to the substrate at regions which are substantially the same as contact regions at which the substrate was attached to the measuring frame.