Abstract:
The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.
Abstract:
The invention relates to an arrangement for preparing a gas in a closable reactor by supplying the reactor with carbon-based biomass or chopped wood material, such as chips, in substantially oxygen-free conditions, by allowing the biomass or wood material to gasify at a high temperature, and by recovering the gas generated in a gasification reaction. In that the arrangement the reactor has its interior defined by a feed pipe whose inlet end is closable with a shut-off valve, especially with a ball valve, and whose outlet end adjoins a heatable gasification dome, biomass or chopped wood material is delivered from the feed pipe's inlet end into the reactor's interior, the reactor's interior is supplied with free water/water vapor in its supercritical state, which is optionally prepared catalytically by splitting water/water vapor, the biomass or wood material is conveyed into a gasification space of the reactor's interior, which is in connection with the heated gasification dome and which is adapted to have existing conditions selected in a manner such that the water present in said gasification space is present in its supercritical state, and the gas generated in the gasification reaction is recovered.
Abstract:
Technologies are presented for reducing corrosion M supercritical water gasification through seeded sacrificial metal particles. The metal panicles may be seeded into one or more material input streams through high pressure injection. Once distributed in the SCWG reactor, the metal particles may corrode preferentially to the metal SCWG reactor walls and convert into metal oxides that precipitate out above the supercritical point of water. The precipitated metal oxides may then be collected downstream of the SCWG reactor to be reprocessed back into seed metal at a smelter. The seeded metal particles may complete a process material cycle with limited net additional waste.
Abstract:
Disclosed is a multi-stage plasma reactor system with hollow cathodes for cracking carbonaceous material with each stage comprising: hollow cathodes and hollow anodes cooled by recycling cooling medium or refrigerant; working gas inlet(s); inlet(s) of carbonaceous material and carrier gas as feedstock; reaction tubes in connection with the anode or cathode, in addition, the reactor system also comprises: at least one inlet(s) of quench medium located lower portion of last one of the reaction tubes; and at least one outlet(s) of quenched products and gases located on bottom or lower portion of last one of the reaction tubes, wherein chambers are formed between the first hollow cathode or the hollow cathode used as the reaction tube of any stage and the anode so as to generate plasma gas and/or electric arc therein, generated plasma gas jet fully contacts and efficiently mixes with the carbonaceous material and carrier gas as feedstock and/or volatiles caused by pyrolysis within or nearby highest temperature region of the chambers, and pyrolysis of the carbonaceous material and/or gas-phase reaction of volatiles are occurred. The present reactor system has excellent energy efficiency and higher cracked products yield.
Abstract:
A device for converting biomass with a water content of at least 50% to gaseous products includes a reactor filled at least partially with a packing including at least one filler body for accommodating supercritical water and a hydrothermal molten salt. A heater is arranged to heat up the reactor and its content. A first feeding pipe is coupled to the reactor to feed water and salt solution into the reactor. A second feeding pipe is coupled to the reactor to feed to biomass into the reactor. A discharge pipe is coupled to the reactor to discharge gaseous products from the reactor. An outlet is proved in the bottom of the reactor for removing portions of the molten salt.
Abstract:
A coal processing method includes adding coal powder, water and catalyst into a series of tandem reactors and processing therein, wherein the coal powder, water and catalyst are added into the first reactor of the series of tandem reactors; and the temperature and pressure of the series reactors is alternatively arranged in sub-critical state and supercritical state of water from the first reactor, the total product from the previous reactor is used as the feed of the next reactor without any further separation.
Abstract:
A pump system includes a pump that includes a first belt and a second belt that are spaced apart from each other to provide generally straight sides of a passage there between. There is an inlet at one end of the passage and an outlet at an opposite end of the passage, with a passage length that extends between the inlet and the outlet. The passage defines a gap distance in a width direction between the straight sides at the passage inlet. A hopper includes an interior space that terminates at a mouth at the passage inlet. At least one screw is located within the interior space of the hopper and includes a screw diameter in the width direction that is less than or equal to the gap distance.
Abstract:
A reactor (7) for gasifying materials that contain carbon under pressure has a tube wall (20) that has coolant flowing through it and is lined with a refractory material (21). The outlet (9) from the reactor (7) points down and opens into a cooler (10). The reactor is accommodated in a pressurized vessel (1) along with the cooler (10) and can be released and removed independently.
Abstract:
A cyclic char gasifier process and apparatus are described wherein reactant gases are first compressed into the pores of a char fuel to react and then the reacted gases are expanded out of the char fuel pores. This cycle of compression and expansion is repeated with fresh reactant gases supplied for each compression and with reacted gases removed at each expansion. Air and steam are preferred reactant gases when the char fuel is to be gasified by oxidation. Reacted gases from such an oxidation gasifier plant are preferred reactant gases when the char fuel is to be partially gasified by devolatilization. Rapid reaction to a rich product gas can occur over the large surface area inside the char pores and the undesirable Neumann reversion reaction is suppressed by the strongly reducing conditions prevailing therein. The gases of devolatilization gasification can be used to enrichen the gases of oxidation gasification by using two cyclic char gasifier plants in a combination system. The char fuel can be placed into sealed pressure vessel containers or can be gasified in place within an underground coal formation. These cyclic char gasifier plants and systems can produce a network output, one or more fuel gases, a devolatilized char, and a partially oxidized coke as principal products and the proportions of these products can be adjusted over a wide range to match market needs.
Abstract:
An arrangement for pressure gasification of fine-grain coal in which the exit of a reactor is followed by a waste heat boiler for cooling the generated gas. The waste heat boiler has a radiation section and downstream heat exchanger surfaces. The reactor is provided, furthermore, with cooling cubes which are studded and lined with refractory ramming mix. The radiant type heating surfaces are sized so that the gas temperature at the exit of the radiation section is situated below the ash sintering temperature of the coal being used. On gas sides, the radiation section is followed by a pressure vessel accommodating convection type heating surface banks which are swept by the generated gas. The radiation section may be in the form of two gas passages through which the gas flows successively. These gas passages are formed by the tube walls welded between each other in a gas-type manner.