Abstract:
A method is presented comprising transmitting, from an application computer communicably connected to a call controller which is connected to a data network, packetized messages indicative of telephone calls in progress at an endpoint of the data network, or indicative of such endpoint, and transmitting, from the call controller to the application computer, packetized messages indicative of a variety of information contained in, or relevant to, the telephone calls so as to process such information for a variety of applications. Apparatus to implement the method is also presented.
Abstract:
A gateway device performs a method for determining a master gateway device. In the method, the gateway device retrieves one or more other gateway devices and sends a request for a service list to the retrieved other gateway devices. Also, the gateway device receives the service list and version information of each service, and based on the received version information of each service, determines whether to change the master gateway device.
Abstract:
A Data Over Cable Service Interface Specification (DOCSIS) cable modem system is coupled to: i) via a local area internet protocol (IP) network, a voice over internet protocol (VoIP) device operating Session Initiation Protocol (SIP) for signaling a VoIP session; and ii) via a DOCSIS network, a cable modem termination system (CMTS) via a network. The cable modem system comprises instructions stored in a memory and executed by a processor. The instructions comprise: i) in response to receiving a frame via the local area IP network, determining if the frame is a Session Initiation Protocol (SIP) invite message signaling a VoIP session with a remote endpoint; and ii) in response to determining that the frame is a SIP invite message, generating a DOCSIS message to the CMTS to request an addition of reserved bandwidth on the DOCSIS network for the VoIP session.
Abstract:
A method for controlling transit of routing messages in a network comprising multiple autonomous systems (AS) is disclosed. The method includes receiving, at a first AS, a routing message of an inter-AS routing protocol and identifying that the routing message comprises transit domain control (TDC) information specifying one or more autonomous systems to which the routing message may be propagated and/or one or more autonomous systems to which the routing message may not be propagated. The method further includes propagating the routing message from the first AS to a second AS in accordance with the TDC information.
Abstract:
A network system for enabling voice interaction between communications-center applications and human agents remote from the center has a primary server connected to the network the server controlling at least one routing point used by the center, a secondary server connected to the network the secondary server for generating and serving voice extensible markup language, a voice gateway associated with the secondary server, the gateway for executing voice extensible markup language and recognizing speech input, and a software platform based in the primary server and distributed in part as a server application to the secondary server, the software suite functioning as a data transformation interface between the center applications and the gateway. In a preferred use agents and applications communicate bi-directionally using VXML.
Abstract:
Various embodiments of the present technology allow multi-realm support at I/S-CSCF to IMS by the same I/S-CSCF nodes. Some embodiments allow for a registration message to be received from an IMS client. The registration message can be used to establish, through an Internet Protocol Multimedia Subsystem (IMS) core network, a service between a first endpoint associated with a first realm and a second endpoint associated with a second, different realm. The registration message can be translated so that the second endpoint believes the first endpoint is associated with the second realm before being transmitted to the second endpoint. Upon receiving a successful IMS registration message from the IMS core network, a binding can be created between the first endpoint and the second endpoint.
Abstract:
An improved system and method are disclosed for peer-to-peer communications. In one example, the method is for connecting an endpoint that is separated from another endpoint by a symmetric network address translation device.
Abstract:
A broadband gateway may manage confidential data associated with users in a home network managed and/or serviced by the broadband gateway. The broadband gateway may store the user confidential data broadband gateway in a distributed manner, wherein the confidential data may be divided into a plurality of portions and stored separately in multiple storage locations or devices. When users authorize the transfer of the confidential data, all portions may be communicated to enable aggregating them such that the confidential data may be obtained. The user confidential data may be encrypted. The broadband gateway may securely communicate and/or share the user confidential user data. This may be achieved by tracking communication of the user confidential data, by using tags incorporated into the data. The broadband gateway may also ensure that communicated confidential data is rendered unusable under certain conditions, based on use for various timing tags for example.
Abstract:
A border gateway (2) and a SIP Application Server (8) in an IMS network (3), which both are configured to connect a private branch exchange (1) to the IMS network using the SIP Connect. The connecting comprises the border gateway detecting, based on an address contained in a received SIP register message, that the SIP register message is received from a private branch exchange. Then, the border gateway forwards the received message to the SIP Application Server as a SIP connect-message from a private branch exchange, and the SIP Application server stores a binding server between an IP address of the private branch exchange and the received address associated with the private branch exchange, e.g. by dynamically updating an eDNS (6).
Abstract:
A method and system architecture for automation and alarm systems is provided. According to exemplary embodiments, relatively simple processing tasks are performed at the sensor level, with more complex processing being shifted to the gateway entity or a networked processing device. The gateway entity dynamically allocates processing resources for sensors. If a sensor detects than an event is occurring, or predicts that an event is about to occur, the sensor submits a resources allocation request and a power balancer running on the gateway entity processes the request. In response to the resources allocation request, the gateway entity allocates some processing resources to the requesting sensor and the data is processed in real-time or near-real-time by the gateway entity.