Abstract:
A method and system architecture for automation and alarm systems is provided. The system architecture is hierarchically organized, allowing devices to process system data differently at different levels of the hierarchy. Moreover, different devices at the same level of the hierarchy may employ different or custom configurations, allowing for context-dependent algorithms to be deployed in the system. The configuration of each device in the system is defined by a set of rules, filters, thresholds, and other criteria, which are pushed to a device from other devices in the hierarchy. Accordingly, the configuration of each device is dynamically updated as information is learned about the context in which the device is deployed, and as more advanced algorithms and configurations are developed.
Abstract:
An improved HVAC vent is disclosed. The vent may include an air turbine positioned within a passageway for selectively enabling and preventing airflow. In use, the air turbine is selectively operable between first and second states. In the first state, the air turbine may be freely rotatable, via the airflow, so that the received airflow can move through the passageway. In the second state, rotation of the air turbine is controlled or prevented so that the received airflow is inhibited or substantially inhibited from moving through the passageway. The vent may also include a motor. In use, the motor may act an energy generator and as an active brake so that in the first state, rotation of the air turbine is used to charge a power storage unit, and in the second state, the motor limits rotation of the air turbine.
Abstract:
A system and method for processing user speech commands in a voice interactive system is disclosed. Users issue speech phrases on a local device in a premises network, and the local devices first determine if the speech phrases match any commands in a set of local control commands. The control commands, in examples, can activate and deactivate premises devices such as “smart” televisions and simpler lighting devices connected to home automation hubs. In the event of a command match, local actions associated with the commands are executed directly on the premises devices in response. When no match is found on the local device, the speech phrases are sent in messages to a remote server over a network cloud such as the Internet for further processing. This can save on bandwidth and cost as compared to current voice recognition systems.
Abstract:
A method and system architecture for automation and alarm systems is provided. An intelligent fire detection sensor is provided that provides input data to a gateway device for processing and facilitates two-way communication with users and a third-party monitoring service. The system architecture is hierarchically organized, allowing devices to process system data differently at different levels of the hierarchy. Processing of at least some of the sensor data is overseen by the gateway device, which may determine, based on the processing, to activate one or more secondary sensors at the fire detector (such as an optical camera). The gateway device and fire detection sensor may interact cooperatively to process voice commands and/or gesture data, and to recognize false alarms.
Abstract:
An AC measurement circuit includes a rectifier for receiving an AC signal; a peak detection circuit; and a voltage divider, interconnected with an output of the rectifier, and the input of the peak detection circuit to provide the peak detection circuit with a voltage value equal to a fraction of the AC signal. An analog to digital converter, has its analog input interconnected with an output of the peak detection circuit, for providing a digital output corresponding to its analog input. A summing circuit sums n samples of the digital output. The voltage divider is configured so that the summing circuit calculates an average measurement of the AC signal by summing n samples and without floating point division.
Abstract:
A method and system architecture for automation and alarm systems is provided. An intelligent fire detection sensor is provided that provides input data to a gateway device for processing and facilitates two-way communication with users and a third-party monitoring service. The system architecture is hierarchically organized, allowing devices to process system data differently at different levels of the hierarchy. Processing of at least some of the sensor data is overseen by the gateway device, which may determine, based on the processing, to activate one or more secondary sensors at the fire detector (such as an optical camera). The gateway device and fire detection sensor may interact cooperatively to process voice commands and/or gesture data, and to recognize false alarms.
Abstract:
A method and system architecture for automation and alarm systems is provided. According to exemplary embodiments, relatively simple processing tasks are performed at the sensor level, with more complex processing being shifted to the gateway entity or a networked processing device. The gateway entity dynamically allocates processing resources for sensors. If a sensor detects than an event is occurring, or predicts that an event is about to occur, the sensor submits a resources allocation request and a power balancer running on the gateway entity processes the request. In response to the resources allocation request, the gateway entity allocates some processing resources to the requesting sensor and the data is processed in real-time or near-real-time by the gateway entity.
Abstract:
A Safety Cooking Device includes a thermal sensor that detects infrared radiation (IR) to generate thermal images of a cooktop over time, and a controller. The controller uses the thermal images to determine whether the cooktop is unattended. Both wired and wireless embodiments of the cooking safety device are disclosed. In one implementation, the cooking safety device is in communication with and reports to a security panel of a security system.
Abstract:
The embodiments disclose a circuit for detecting and determining a type of ground fault in a security system. An operational amplifier (OA) having positive and negative inputs and an output may receive AC input signals having different frequencies, f1 and f2 at a positive input and provide an AC output signal at the output. An OA feedback loop may comprise a ground fault equivalent impedance connected at the OA negative input and a feedback resistor connected between the OA output and the OA negative input. A rectifier may convert the AC output signal to a DC signal and a filter to obtain a steady DC voltage from the rectified DC signal. A steady DC voltage for two different AC input signals may be obtained and converted to a relative voltage with respect to a constant input voltage amplitude. The relative voltages may be compared to detect and determine a type of ground fault condition.
Abstract:
A bi-directional current limiter may be configured to receive an AC signal and bi-directionally limit the loop current to a predetermined current value. A first and second zone may be configured in series with the AC signal and bi-directional current limiter. The first and second zone may include unidirectional current limiters to limit a unidirectional current that is proportionately less than the bi-directionally limited current. A first opto-coupler circuit (ISO1) may be configured to detect both high and low current states in the current loop circuit. Second and third opto-coupler circuits (ISO2 and ISO3) associated with the first and second zones may be configured to detect only high current states in the current loop circuit. The status of the first and second zones may then be determined by an analysis of the current level in the current loop circuit during two half cycles as determined by the various current limiters.