Abstract:
A scanning electron microscope includes an irradiation optical system for irradiating an electron beam to a sample; a sample holder for supporting the sample, arranged inside a sample chamber; at least one electric field supply electrode arranged around the sample holder; and an ion current detection electrode.
Abstract:
An optical microscope slide in a charged particle instrument such as an electron microscope or a focused ion beam instrument. Conventional microscope slides are not fit for use in an electron microscope as they are insulating and would thus charge when viewed in an electron microscope due to the impinging beam of charged particles. However, microscope slides exist that show a coating with a conductive layer of e.g. Indium Tin Oxide (ITO). These microscope slides are normally used for heating the object mounted on the slide by passing a current through the conductive layer. Experiments show that these microscope slides can be used advantageously in a charged particle instrument by connecting the conductive layer to e.g. ground potential, thereby forming a return path for the impinging charged particles and thus avoiding charging. The invention further relates to a charged particle instrument that is further equipped with an optical microscope.
Abstract:
A scanning electron microscope includes an irradiation optical system for irradiating an electron beam to a sample; a sample holder for supporting the sample, arranged inside a sample chamber; at least one electric field supply electrode arranged around the sample holder; and an ion current detection electrode.
Abstract:
In a scanning electron microscope, an emitted primary electron beam is diverted by an angle of at least about 45 degrees prior to incidence with a specimen. The beam may be bent by a magnetic separator. The separator may also serve to deflect secondary electron and back scattered electrons. As the angle of emissions and reflections from the specimen is close to the angle of incidence, bending the primary electron beam prior to incidence, allows the electron source to be located so as not to obstruct the travel of emissions and reflections to suitable detectors.
Abstract:
Disclosed are methods and apparatus for characterizing defects by using X-ray emission analysis techniques. The X-rays are emitted in response to an impinging beam, such as an electron beam, directed towards the sample surface where a defect resides. It may also be used to help determine where the void(s) are with respect to the interconnect structure. Methods disclosed are for spatially locating defects in or on integrated circuits. Also disclosed are methods for identifying the elemental composition of defects and spatially locating different elemental components of defects.
Abstract:
The purpose of the present invention is to inspect the position, number, and size of fine defects in a variety of solid state materials, including a semiconductor device and metallic materials, with a high spatial resolution of nanometer order. The positron irradiation function is installed in the converged electron beam apparatus. The defect location information is obtained from the converged electron beam location information, and the number and size of defects are obtained from the detected information of γ-rays created by pair annihilation of electrons and positrons, and this two-dimensional distribution information is displayed in the monitor. Information on ultra-fine defects in a crystal can be provided with high-speed and high-resolution, and nondestructively in the case of a semiconductor wafer.
Abstract:
There is provided an element mapping unit, scanning transmission electron microscope, and element mapping method that enable to acquire an element mapping image very easily. On the scanning transmission electron microscope, the electron beam transmitted through an object to be analyzed enters into the element mapping unit. The electron beam is analyzed of its energy into spectrum by an electron spectrometer and an electron energy loss spectrum is acquired. Because the acceleration voltage data for each element and window data for 2-window method, 3-window method or contrast tuning method are already stored in a database and accordingly the spectrum measurement is carried out immediately even when an element to be analyzed is changed to another, the operator can confirm a two-dimensional element distribution map immediately. Besides, because every electron beam that enters into an energy filter passes through the object point, aberration strain in the electron spectrometer can be minimized and higher energy stability can be achieved. As a result, drift of the electron energy loss spectrum acquired by analyzing the electron beam into spectrum can be minimized and element distribution with higher accuracy can be acquired.
Abstract:
In one aspect, the present invention is a system and method for obtaining information regarding one or more contact holes and/or vias on a semiconductor wafer. In this regard, in one embodiment, the system comprises an electron gun to irradiate an electron beam on the one or more contact holes and/or vias wherein the electron beam includes a cross-section which is greater than the one or more contact holes. The system further includes a current measuring device, coupled to the semiconductor wafer, may measure a compensation current, wherein the compensation current is generated in response to the electron beam irradiated on the one or more contact holes. The system also includes a data processor, coupled to the current measuring device, to determine information relating to the one or more contact holes and/or vias using the compensation current.
Abstract:
The method of measuring crystallographic orientations, crystal systems or the like of the surface of a specimen has steps of: irradiating the specimen with an ion beam; measuring tho secondary electrons generated by the irradiation of the ion beam; repeating the irradiation of the ion beam and the measurement of the secondary electrons with each variation in an angle of incidence of the ion beam with respect to the specimen; and determining the crystalline state based on the variation in the amount of the secondary electrons corresponding to the variation of the angle of incidence.
Abstract:
According to the present invention, there are newly provided in a scanning electron microscope with an in-lens system a first low-magnification mode that sets the current of the object lens to be zero or in a weak excitation state, and a second low-magnification mode that sets the current of the object lens to be a value that changes in proportion to the square root of the accelerating voltage. The scanning electron microscope has a configuration wherein normal sample image (secondary electron image) observation is performed in the first low-magnification mode, and it switches the first low-magnification mode to the second low-magnification mode when X-ray analysis is performed. As a result, both sample image (secondary electron image) observation and X-ray analysis can be performed in low-magnification mode.