Abstract:
An optical thin-film vapor deposition apparatus and method are capable of producing an optical thin-film by vapor depositing a vapor deposition substance onto substrates (14) within a vacuum vessel (10). A dome shaped holder (12) is disposed within the vacuum vessel (10) and holds the substrates (14). A drive rotates the dome shaped holder (12). A vapor depositing source (34) is disposed oppositely to the substrates (14). An ion source (38) irradiates ions to the substrates (14). A neutralizer (40) irradiates electrons to the substrates (14). The ion source (38) is disposed at an angle between an axis, along which ions are irradiated from the ion source (38), and a line perpendicular to a surface of each of the substrates (14). The angle is between 8° inclusive and 40° inclusive. A ratio of a distance in a vertical direction between (i) a center of rotational axis of the dome shaped holder (12), and (ii) a center of the ion source (38), relative to a diameter of the dome shaped holder (12), is between 0.5 inclusive and 1.2 inclusive.
Abstract:
A hybrid ion implantation apparatus that is equipped with shaping masks that shape the two edges of a ribbon-like ion beam IB in the short-side direction, a profiler that measures the current distribution in the long-side direction of the ion beam IB shaped by the shaping masks, and an electron beam supply unit that supplies an electron beam EB across the entire region in the long-side direction of the ion beam IB prior to its shaping by the shaping masks, wherein the electron beam supply unit varies the supply dose of the electron beam EB at each location in the long-side direction of the ion beam IB according to results of measurements by the profiler.
Abstract:
An ion beam processing system includes a plasma generator with a magnetic flood system. Magnets are provided for reducing the transverse magnetic field in the ion beam transport region of the plasma flood device so as to control charging damage or to neutralize beam space charge in ion beam processing and semiconductor ion implantation. The system is especially adapted for beam lines with ribbon beams.
Abstract:
Methods for using sub-100V electron beam landing energies for performing circuit edit operations. Circuit edit operations can include imaging for navigation and etching in the presence of a suitable gas. Low landing energies can be obtained by modifying a decelerator system of native FESEM equipment, or by using biasing means near the sample surface for decelerating electrons of the primary beam. At low landing energies near the operating voltage of a semiconductor circuit, voltage contrast effects can be visually seen for enhancing operator navigation. Low landing energies can be used during etching processes for minimizing the interaction volume of the beam and obtaining accurate and localized etching.
Abstract:
An ion source apparatus has an ion source assembly and a neutralizer. The ion source assembly has a body, a heat-dissipating device, an anode chunk and a gas distributor. The heat-dissipating device has a thermal transfer plate and a first thermal side sheet. The thermal transfer plate has a top, a protrusion and an annular disrupting recess. The protrusion is formed at the top of the thermal transfer plate. The disrupting recess is radially formed around the protrusion. The first thermal side sheet surrounds the protrusion. The gas distributor is mounted securely in the protrusion. Because the protrusion is located between the gas distributor and the first thermal side sheet and the disrupting recess is radially formed around the protrusion, accumulated ions, molecules and deposition film particles are longitudinally disrupted and do not form a short circuit between the gas distributor and the first thermal side sheet.
Abstract:
The invention provides for a method of improving bioactivity of a surface of an implantable object. The invention also provides for a method of improving bioactivity of a surface of biological laboratory ware. The invention further provides a method of attaching cells to an object. The invention even further provides for a method of preparing an object for medical implantation. The invention also provides for an article with attached cell, and for an article for medical implantation. Improvements result from the application of gas-cluster ion beam technology and from the application of neutral beam technology, wherein neutral beams are derived from accelerated gas-cluster ion beams.
Abstract:
An object of the present invention is to provide a scanning electron microscope aiming at making it possible to control the quantity of electrons generated by collision of electrons emitted from a sample with other members, and a sample charging control method using the control of electron quantity. To achieve the object, a scanning electron microscope including a plurality of apertures through which an electron beam can pass and a mechanism for switching the apertures for the electron beam, and a method for controlling sample charging by switching the apertures are proposed. The plurality of apertures are at least two apertures. Portions respectively having different secondary electron emission efficiencies are provided on peripheral portions of the at least two apertures on a side opposed to the sample. The quantity of electrons generated by collision of electrons emitted from the sample can be controlled by switching the apertures.
Abstract:
An ion beam irradiating apparatus has a field emission electron source 10 which is disposed in a vicinity of a path of the ion beam 2, and which emits electrons 12. The field emission electron source 10 is placed in a direction along which an incident angle formed by the electrons 12 emitted from the electron source 10 and a direction parallel to the traveling direction of the ion beam 2 is in the range from −15 deg. to +45 deg. (an inward direction of the ion beam 2 is +, and an outward direction is −).
Abstract:
The invention concerns a source supplying an adjustable energy electron beam, comprising a plasma chamber (P) consisting of an enclosure (1) having an inner surface of a first value (S1) and an extraction gate (2) having a surface of a second value (S2), the gate potential being different from that of the enclosure and adjustable. The invention is characterized in that the plasma is excited and confined in multipolar or multidipolar magnetic structures, the ratio of the second value (S2) over the first value (S1) being close to: D=1/β √2πme/mi exp (−½), wherein: β is the proportion of electrons of the plasma P, me the electron mass, and mi is the mass of positively charged ions.
Abstract translation:本发明涉及提供可调节能量电子束的源,包括由具有第一值(S1)的内表面的外壳(1)和具有第二值的表面的抽出栅极(2)组成的等离子体室(P) 值(S2),门电位与外壳不同,可调。 本发明的特征在于等离子体被激发并限制在多极或多极磁结构中,第二值(S2)超过第一值(S1)的比接近于:D = 1 /&bgr; √2&pgr; me / mi exp(-½),其中:&bgr; 是等离子体P的电子的比例,me是电子质量,mi是带正电荷的离子的质量。
Abstract:
An apparatus is provided for reducing particle contamination in an ion implantation system. The apparatus has an enclosure having an entrance, an exit, and at least one louvered side having a plurality of louvers defined therein. A beamline of the ion implantation system passes through the entrance and exit, wherein the plurality of louvers of the at least one louvered side are configured to mechanically filter an edge of an ion beam traveling along the beamline. The enclosure can have two louvered sides and a louvered top, wherein respective widths of the entrance and exit of the enclosure, when measured perpendicular to the beamline, are generally defined by a position of the two louvered sides with respect to one another. One or more of the louvered sides can be adjustably mounted, wherein the width of one or more of the entrance and exit of the enclosure is controllable.