Abstract:
Systems and methods are provided for evaluating a fresh tissue sample, prepared as to fluoresce under illumination, during a medical procedure. A structured light source is configured to project a spatially patterned light beam onto the fresh tissue sample. An imaging system is configured to produce an image from fluorescence emitted from the illuminated fresh tissue sample. A system control is configured to provide a human-comprehensible clinically useful output associated with the medical procedure.
Abstract:
An optical module (1A) includes a polarization beam splitter (10A) having a light splitting surface (11), polarization elements (20, 40), and respectively arranged on an optical path of a first polarization component (L2) transmitted through the light splitting surface (11) and an optical path of a second polarization component (L4) reflected by the light splitting surface (11), a reflective SLM (30) that modulates and reflects the first polarization component (L2) passing through the polarization element (20), and a reflective SLM (50) that modulates and reflects the second polarization component (L4) passing through the polarization element (40). The first modulation light (L3) passing through the polarization element (20) again and then reflected by the light splitting surface (11) and the second modulation light (L5) passing through the polarization element (40) again and then transmitted through the light splitting surface (11) are combined with each other.
Abstract:
An imaging or sensor system comprises a transmitter assembly, a receiver assembly and a control unit. The transmitter assembly defines an outgoing optical beam transmission path with respect to a target surface and the receiver assembly defines a return optical signal transmission path from the target surface. Each of the paths includes transmission through or reflection from at least one microdisplay device comprising a plurality of controllable elements for selective placement in a transmit mode for transmission of light along the transmission paths. A control unit selectively places the microdisplay device elements in the transmission mode.
Abstract:
In order to investigate a specimen (30) with the aid of a microscope (20), dye particles (40, 42) in the specimen (30) are excited to fluoresce with the aid of a first illumination light beam (24). Fluorescent light proceeding from the specimen (30) is directed via an optical arrangement (34) onto an areal sensor (36), the optical arrangement (34) acting on the fluorescent light in such a way that sub-beams of the fluorescent light interfere with themselves, so that interference patterns produced as a result of the interference are imaged on a sensitive surface of the areal sensor (36) and sensed thereby. Positions of the dye particles (40, 42) within the specimen (30) are ascertained as a function of the interference patterns.
Abstract:
An apparatus includes a low-coherent light source configured to emit an electromagnetic wave; a spatial light modulator configured to modulate a wavefront of the electromagnetic wave; an interferometer including a movable mirror to set a depth of a medium to be irradiated by the electromagnetic wave and a beam splitter configured to the electromagnetic wave into a reference beam and an object beam; a detector to detect information about an interference pattern formed by the object beam coming from the medium via the beam splitter and the reference beam reflected by the movable mirror; and a controller configured to control the spatial light modulator, based on the information, to form a modulated wavefront for irradiating the medium.
Abstract:
An imaging or sensor system comprises a transmitter assembly, a receiver assembly and a control unit. The transmitter assembly defines an outgoing optical beam transmission path with respect to a target surface and the receiver assembly defines a return optical signal transmission path from the target surface. Each of the paths includes transmission through or reflection from at least one microdisplay device comprising a plurality of controllable elements for selective placement in a transmit mode for transmission of light along the transmission paths. A control unit selectively places the microdisplay device elements in the transmission mode.
Abstract:
An optical platform and system for the simultaneous stimulation, manipulation and probing of multiple living cells in complex biological systems. The apparatus utilizes a spatiotemporal light modulator to expose a sample to pinpoints of light at selected times and wavelengths in two or three dimensional space and then detect the responses. In one embodiment, a spatiotemporal light modulator is optically coupled to a variable wavelength light source, a lens system and a system control unit with sample response sensors, wherein sample responses are detected after exposure to patterns of light in real time. Light patterns can be modulated in response to sample responses.
Abstract:
Method of fluorescence imaging including: illuminating a sample to excite its fluorescence and acquiring an image thereof; based on fluorescence spectral and spatial information from the sample's fluorescence image, segmenting the image into regions of similar spectral properties; for each image segment, exciting the fluorescence of the corresponding sample region, and detecting the corresponding fluorescence; based on modelling, determining expected fluorescence parameters from the fluorescence signals detected for each region; scanning the sample and determining final fluorescence parameters based on said expected fluorescence parameters.
Abstract:
The present invention relates to novel systems, devices, and methods comprising spatial light modulators for use in the reading and synthesis of microarrays. For example, the present invention provides micromirror systems for synthesizing and acquiring data from nucleic acid microarrays and systems for collecting, processing, and analyzing data obtained from a microarray.
Abstract:
The present invention relates to a confocal microscope and the measuring methods of fluorescence and the polarized light using the same, and said confocal microscope is provided with the inlet optical part (10, 10′) to let the polarized light from an illuminating light source (11) onto an object to be observed (2) via a matrix type liquid crystal device (22) provided with a microlens array (21) on its top part, and an objective lens (23), the light detecting part (30, 30′) to detect the reflected or the fluorescent light from the object to be observed, and the liquid crystal control subpart (52) to control a liquid crystal device (22), and it transmits the light passing through said microlens array (21) from each microlens to each pixel (22a) of the liquid crystal device (22), and makes a plurality of foci (24) on the object to be observed (2) by the objective lens (23), as well as controls polarization directions of the lights transmitted through each pixel of the liquid crystal device (22) using the liquid crystal control subpart (52) so that they are made mutually orthogonal.