摘要:
Methods and systems for on-site, continuous generation of peracid chemistry, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions, are disclosed. In particular, an adjustable biocide formulator or generator system is designed for on-site generation of peroxycarboxylic acids and peroxycarboxylic acid forming compositions from sugar esters. Methods of using the in situ generated peroxycarboxylic acids and peroxycarboxylic acid forming compositions are also disclosed.
摘要:
The present invention relates to a pressure-tight storage vessel containing a liquid, wherein the storage vessel has an inner floor and an upper side and is closed in a pressure-sealing manner by a closure, and wherein the nature of the storage vessel allows pressure-sealing piercing with at least two hollow needles; and to a method for transferring a liquid from a storage vessel to a reaction vessel, the method comprising the following steps: supplying the storage vessel according to the invention, pressure-sealing piercing with a first hollow needle, which is connected to a rinsing-liquid tank, and pressure-sealing piercing with a second hollow needle, which is connected to the reaction vessel, introducing rinsing liquid from the rinsing-liquid tank, via the first hollow needle, into the storage vessel, the liquid being driven out of the storage vessel, via the second hollow needle, into the reaction vessel; and to an apparatus which is suitable for implementing the method according to the invention.
摘要:
A gaseous fuel catalytic partial oxidation (CPOX) reformer can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen-rich product reformate to diffuse therefrom. At least the exterior surface of a CPOX reaction zone of a CPOX reactor unit can include a hydrogen barrier. The gaseous fuel CPOX reformer also can include one or more igniters, and a source of gaseous reformable fuel.
摘要:
A method of making a low-fluoride reactive PIB composition includes (a) providing a modified C4 feedstock by way of blending a mixed C4 feedstock with a second feedstock having a lower LB/IsoB ratio; or providing a C4 feedstock with an LB/IsoB index of less than 10%; (b) feeding the modified C4 feedstock or the C4 feedstock with an LB/IsoB index of less than 10% to a CSTR with a homogeneous catalyst comprising BF3 and a modifier selected from alcohols, ethers and mixtures thereof; (c) polymerizing the modified C4 feedstock or the C4 feedstock with an LB/IsoB index of less than 10% in the reactor while maintaining the reactor at a temperature above −15° C. and utilizing a residence time less than 45 minutes to produce a crude PIB composition in a polymerization mixture; and (d) recovering a purified PIB composition from the polymerization mixture having a molecular weight, Mn, from 250 to 5000 Daltons and an alpha vinylidene content of at least 50 mol %. The crude PIB composition suitably has a fluoride content of less than 100 ppm and the purified PIB composition has a fluoride content of less than 20 ppm in preferred embodiments. In the most preferred embodiments, ammonium salts are used to neutralize the catalyst and fluoride salts are sublimed from the product at elevated temperatures.
摘要:
Embodiments of an injection device shaped in order to atomize a liquid into droplets by means of a gas are disclosed herein. The injection device may comprise a body having a gas inlet orifice intended to be connected to a gas supply duct. The injection device may further comprise an outlet orifice for discharging the atomized liquid. The injection device may also comprise a straight internal duct connecting the inlet orifice to the outlet orifice along an axial direction of said body. At least two liquid inlet ducts may be intended to be connected to at least one liquid supply duct pass through said body radially or substantially radially and open into said internal duct. These liquid inlet ducts may each have an axis and are arranged so that their axes intersect at one and the same point on an axial line extending inside the internal duct.
摘要:
The present invention relates to a solution reaction apparatus and solution reaction method using the same, and more particularly a solution reaction apparatus and a solution reaction method using the same, wherein a reaction vessel is made by using a sealing member, a reaction vessel forming member, and a substrate serving as the bottom part of the reaction vessel so as to cause one side of a reaction solution only to contact the solution, thereby adjusting the temperature of the substrate differently from the temperature of the solution. The solution reaction apparatus of the present invention can control temperature of the substrate and temperature of the reaction solution separately, thereby it can control the temperature of the solution above the boiling point of the solution, and can react the solution while constantly maintaining the concentration of the solution by the solution circulatory device. Accordingly, it has an effect of freely forming various nanostructures on the substrate.
摘要:
The present invention concerns a process for unloading a bed (2) of particulate material from a vessel (1), which comprises inserting a removable and portable extraction pipe (4) into the lower part of said bed, injecting a fluidization gas upwardly into the extraction pipe (4) from the bottom part thereof, along the entire length of the extraction pipe (4), and applying a positive pressure differential between the inlet and the outlet of said extraction pipe.The present invention further concerns a device suitable for implementing such a process.
摘要:
Integrated liquid fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The liquid fuel CPOX reformer also can include a vaporizer, one or more igniters, and a source of liquid reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the liquid fuel CPOX reactor unit.
摘要:
A continuous polymerization apparatus uses at least a first reactor and a second reactor (10, 20). Each of the reactors (10, 20) comprises a supply port (11a, 21a) and an effluent port (11b, 21b). The supply port (11a) of the first reactor (10) is connected to supply sources (1, 3) of a raw material monomer and a polymerization initiator, and the effluent port (11b) thereof is connected to the supply port (21a) of the second reactor (20) by a connection line (15a). The connection line (15a) is combined with a replenishing line (15b) through an injection valve (50) at a combining part. The injection valve (50) comprises, in a full closure state thereof, a clearance that may cause a fluid comprising at least the raw material monomer to flow from the replenishing line (15b) to the connection line (15a).
摘要:
The invention relates to a device for synthesizing a polymer accompanied by separating a gaseous substance. Said device comprises: a reactor chamber (1) having a substantially circular cylinder-shaped upper section (11), which is delimited by two circular surfaces (111, 112) and a circumferential surface (113) and has a longitudinal cylinder axis, and a lower section (12), the upper section (11) and the lower section (12) being connected to one another via the first circular surface (111); an inlet opening (2); a first outlet opening (3), which is arranged in a wall of the lower section (12); a second outlet opening (4), which is arranged in the second circular surface (112) or in the circumferential surface (113) between the inlet opening (2) and the second circular surface (112); and a removal device (51), which is arranged so as to be movable along the longitudinal cylinder axis at least between the second circular surface (112) and the inlet opening (2), and contacts the circumferential surface (113). The invention further relates to a method comprising: feeding an oligomer melt (7) into a circular cylinder-shaped first section (11) of a reaction chamber (1) through an inlet opening (2) tangentially to a circumferential surface (113) of the first section (11); polymerizing the oligomer melt (7) to form a polymer melt (8); removing the polymer melt (8) from the reaction chamber (1) through a first outlet opening (3) of the reaction chamber (1); and removing a gaseous substance (9) from the reaction chamber (1) through a second outlet opening (4) of the reaction chamber (1) above the inlet opening (2). Deposits on at least one inner wall of the first section (11) of the reaction chamber (1) above the inlet opening (2) are removed by a removal device (51).