Abstract:
Systems and methods for rapidly atomizing and dispensing electrostatically atomized insecticides and similar low electrical conductivity active materials without the use of VOCs. The active materials are dispensed via insertion of a disposable cartridge in a dispensing apparatus. The dispensing apparatus is hand actuated and the exhausted cartridge is minimized to the size of a wad of chewing gum and it is doubly sealed to prevent any residual active material from leaking into the environment. Spray flow and configuration may be user selectable.
Abstract:
An aerosol for disinsectization comprising a mixture comprising a disinfestant component, a solvent, and a propellant, and a pressure-resistant container provided with an actuator, wherein the mixture is contained in the pressure-resistant container, and wherein the solvent is contained in the mixture in an amount of from 0 to 10% by volume, and the actuator has an orifice diameter of from 0.7 to 2 mm; and an aerosol for disinsectization comprising a mixture comprising a disinfestant component, a solvent, and a propellant, and a pressure-resistant container provided with an actuator, wherein the mixture is contained in the pressure-resistant container, and wherein the solvent is contained in the mixture in an amount of from 0 to 10% by volume, and the actuator has a long nozzle having an orifice diameter of from 0.4 to 2 mm.
Abstract:
A volatile material dispenser includes a drive unit adapted to be mounted on a container. The drive unit is adapted to be activated in response to a signal from at least a sensor to radially displace a tilt-activated valve stem of the container. The volatile material dispenser further includes a flexible tube having a discharge end fixedly held with respect to the container. The flexible tube is adapted to be in fluid communication with the tilt-activated valve stem.
Abstract:
A portable, light-activated, mist sprayer system comprising direct current power supply, an ambient light sensor, electronic circuitry that evaluates an electrical signal received from the light sensor to determine whether a “dusk” or “dawn” light condition exists; a container of treating fluid at a desired concentration; a motor and pump that are activated at the appropriate time as determined by the sensed light condition; at least one sprayer nozzle that will dispense a mist containing the treating fluid whenever the pump is operating; and a timer that turns off the pump after a preset interval to terminate the spraying cycle. A preferred utility for the system of the invention is spraying dilute solutions of insecticide or insect repellent during the periods of significant insect activity that typically occur around dusk and dawn. An RF receiving unit is also disclosed for optional activation using a remote transmitter.
Abstract:
An insert, a system, and a method are provided for dispensing a compressed gas product. The insert includes a swirl chamber, inlet ports to the swirl chamber, and an outlet orifice. The insert has specifically configured parameters relating to the diameter of the swirl chamber, the diameter of the outlet orifice, the length of the outlet orifice, and the depth of the swirl chamber. The insert, system, and method can provide a dispensed compressed gas product with a remarkably constant flow rate and with a remarkably constant particle size.
Abstract:
Systems, devices, methods, and compositions that improve the scent perception for a user. Improved scent perception is achieved by presenting alternating scents and by varying levels of output of scents, as well as by minimizing device clogging, thereby improving evaporation profiles.
Abstract:
Systems and devices for emitting volatile materials are disclosed. In some embodiments, devices for emitting two or more fragrance compositions are disclosed. In one non-limiting embodiment of a device, the device has a housing, and the housing is supported on an electrical outlet by a plug at least indirectly joined to the housing. The device contains a first volatile composition and a second volatile composition. The first volatile composition is emitted in an alternating period relative to said second volatile composition. In one embodiment of the device, the volatile compositions are alternately emitted during periods that are greater than 15 minutes and less than 2 hours.
Abstract:
A system for dispensing fluid in response to a sensed property such as an ambient sound comprises a sensor (2) for detecting one or more properties, a processing stage for determining if the one or more sensed properties is/are within a predetermined range and/or above and/or below a predetermined level and dispenser (6) for dispensing a fluid into an area surrounding the system if the one or more sensed properties is/are determined by the processing stage to be within a predetermined range and/or above and/or below a predetermined level and/or value.
Abstract:
A mount for aiming and firing an aerosol spray can having housing with legs extending from a housing point creating a central axis whereby the housing and aerosol can freely rotate 360 degrees serving to stir the can contents and having rotative fasteners for fixing the angle of the housing and therefore spray path to a desired target and an adjustable laser for targeting and calibrating the device, with an access door and locking member for securing an aerosol spray can therein, whereby when actuated via remote control, operates to turn a cam and series of linkages in a manner whereby a pushrod is driven downwards to discharge the held aerosol can at an interval relative to the cams speed setting.
Abstract:
A method and apparatus for controlling emission of fragrances into a given area such as a room or a region of a yard; and more particularly the creation of a desired atmosphere within the given area. In addition, the invention involves a volatile substance dispensing device (200) having mounted therein a plurality of reservoirs (31) storing a volatile substance, and a plurality of atomizer assemblies (34) for emitting volatile substances communicated thereto by the reservoirs (31). Preferably, a microcontroller (50) controls the emission of the volatile substances in accordance with preferred programs.