Abstract:
A method of operating a dispensing unit includes the step of entering a first active state, during which the detection of motion within a sensory path of a sensor of a dispensing unit initiates a first pattern activation sequence to release a volume A and a volume B of material from a fluid container. The method further includes the step of entering a second active state upon completion of the first pattern activation sequence, in which the detection of motion in the second active state initiates a second pattern activation sequence to release a volume C and a volume D of material from the container if motion is detected before the lapsing of a time period P and initiates the first pattern activation sequence if the motion is detected after the lapsing of the time period P.
Abstract:
An insert, a system, and a method are provided for dispensing a compressed gas product. The insert includes a swirl chamber, inlet ports to the swirl chamber, and an outlet orifice. The insert has specifically configured parameters relating to the diameter of the swirl chamber, the diameter of the outlet orifice, the length of the outlet orifice, and the depth of the swirl chamber. The insert, system, and method can provide a dispensed compressed gas product with a remarkably constant flow rate and with a remarkably constant particle size.
Abstract:
Aerosol odor eliminating compositions are described which are aqueous based and include at least one alkylene glycol, at least one surfactant wherein one or more of the at least one surfactant has an HLB of about 7 to about 20, compressed gas propellant, at least one fragrance, a buffering system and water. The composition excludes inclusion of a low molecular weight monohydric. The compositions have a volatile organic content (VOC) of less than 5.0% of the total composition based on 100 wt. %, or alternatively, a VOC of less than 0.1% as to the total composition based on 100 wt. % in absence of the wt. % of the active fragrant material of the fragrance. The compositions additionally have a consistent spray rate at multiple pressure ranges.
Abstract:
A method of operating a dispensing device includes the step of entering a first active state, in which the detection of sensory input by a sensor initiates a first pattern activation sequence to energize a drive unit of the dispensing device for a first length of time and a second subsequent length of time to actuate a container. Upon completion of the first pattern activation sequence, the device enters a second active state. The detection of sensory input in the second active state initiates a second pattern activation sequence to energize the drive unit for a third length of time and a fourth subsequent length of time to actuate a container if the sensory input is detected before a time period P lapses. The dispensing device initiates the first pattern activation sequence if the sensory input is detected after the lapsing of the time period P.
Abstract:
An insert, a system, and a method are provided for dispensing a compressed gas product. The insert includes a swirl chamber, inlet ports to the swirl chamber, and an outlet orifice. The insert has specifically configured parameters relating to the diameter of the swirl chamber, the diameter of the outlet orifice, the length of the outlet orifice, and the depth of the swirl chamber. The insert, system, and method can provide a dispensed compressed gas product with a remarkably constant flow rate and with a remarkably constant particle size.
Abstract:
An aqueous compressed gas aerosol formulation in combination with a lined steel can, which may also optionally be tin plated, to provide corrosion stability, fragrance stability and color stability. An aerosol formulation of particular advantage for use is an air and/or fabric treatment formulation. The combination provides a compatibility which allows for the ability to use a broader fragrance pallet for the air and/or fabric treatment formulation which is aqueous based in major proportion. The formulation includes, in addition to an aqueous carrier, a fragrance, nonionic surfactant(s) or a blend of nonionic surfactant(s) and cationic surfactant(s), a compressed gas propellant(s), pH adjuster(s), and corrosion inhibitor(s). The formulation has a pH of about 8 to less than 10. The corrosion inhibitor(s) is(are) mild in strength and used in a minor amount.
Abstract:
Aerosol odor eliminating compositions are described which are aqueous based and include at least one alkylene glycol, at least one surfactant wherein one or more of the at least one surfactant has an HLB of about 7 to about 20, compressed gas propellant, at least one fragrance, a buffering system and water. The composition excludes inclusion of a low molecular weight monohydric. The compositions have a volatile organic content (VOC) of less than 5.0% of the total composition based on 100 wt. %, or alternatively, a VOC of less than 0.1% as to the total composition based on 100 wt. % in absence of the wt. % of the active fragrant material of the fragrance. The compositions additionally have a consistent spray rate at multiple pressure ranges.
Abstract:
Aerosol odor eliminating compositions are described which are aqueous based and include at least one alkylene glycol, at least one surfactant wherein one or more of the at least one surfactant has an HLB of about 7 to about 20, compressed gas propellant, at least one fragrance, a buffering system and water. The composition excludes inclusion of a low molecular weight monohydric. The compositions have a volatile organic content (VOC) of less than 5.0% of the total composition based on 100 wt. %, or alternatively, a VOC of less than 0.1% as to the total composition based on 100 wt. % in absence of the wt. % of the active fragrant material of the fragrance. The compositions additionally have a consistent spray rate at multiple pressure ranges.
Abstract:
A method of operating a dispensing unit includes the step of entering a first active state, during which the detection of motion within a sensory path of a sensor of a dispensing unit initiates a first pattern activation sequence to release a volume A and a volume B of material from a fluid container. The method further includes the step of entering a second active state upon completion of the first pattern activation sequence, in which the detection of motion in the second active state initiates a second pattern activation sequence to release a volume C and a volume D of material from the container if motion is detected before the lapsing of a time period P and initiates the first pattern activation sequence if the motion is detected after the lapsing of the time period P.
Abstract:
Aerosol odor eliminating compositions are described which are aqueous based and include at least one alkylene glycol, at least one surfactant wherein one or more of the at least one surfactant has an HLB of about 7 to about 20, compressed gas propellant, at least one fragrance, a buffering system and water. The composition excludes inclusion of a low molecular weight monohydric. The compositions have a volatile organic content (VOC) of less than 5.0% of the total composition based on 100 wt. %, or alternatively, a VOC of less than 0.1% as to the total composition based on 100 wt. % in absence of the wt. % of the active fragrant material of the fragrance. The compositions additionally have a consistent spray rate at multiple pressure ranges.