Abstract:
An LCD device provides enhanced display quality. An insulating layer is formed on a first substrate. The insulating layer covers the contact portion of a switching device in which the switching device is electrically connected to a transparent electrode and has an opening for exposing a portion of the transparent electrode. A reflection electrode is electrically connected to the transparent electrode through the opening. The insulation layer covers a first portion of a driving circuit formed on the first substrate. A sealant is interposed between the first and second substrate to engage the first and second substrate and to cover a second portion of the driving circuit. Therefore, the driver circuit may operate normally, and the distortion of the signal outputted from the driver circuit may be prevented.
Abstract:
Provided is a fuse structure of a semiconductor device. The fuse structure may include an insulating layer pattern structure, a fuse and a protecting layer pattern. The insulating layer pattern structure may be formed on a substrate. The insulating layer pattern structure may have an opening. The fuse may be formed in the opening. The protecting layer pattern may be formed in the opening of the insulating layer pattern structure to cover the fuse.
Abstract:
Provided are methods of fabricating semiconductor chips, semiconductor chips formed by the methods, and chip-stack packages having the semiconductor chips. One embodiment specifies a method that includes patterning a scribe line region of a semiconductor substrate to form a semiconductor strut spaced apart from edges of a chip region of the semiconductor substrate.
Abstract:
A biochip can include a substrate having surface features of protrusions or recesses and probes coupled to each of the surface features. A biochip can include a substrate having recess regions and probes coupled to each of the recess regions, wherein a surface of each of the recess regions has convexes and concaves. A biochip can include a substrate having recess regions, immobilization layers conformally formed in the recess regions, and probes coupled onto each of the immobilization layers. The biochip can be divided into probe cell regions to which the probes are coupled, wherein the recess regions are formed in the probe cell regions, and non-probe cell regions, wherein a surface of each of the non-probe cell regions can include an exposed surface of the substrate.
Abstract:
A condensing type hot water boiler comprises: a firebox casing that formulates a firebox in which fuel is combusted; a burner that ignites fuel furnished in the upper part of said firebox casing; a ventilator that supplies air to said firebox; a heat exchange casing, wherein heat is exchanged between hot water and the flame and combustion gas flowing in from said firebox, located at the lower part of said firebox casing; and a hot water coil formed to cover the inner wall of said firebox casing and in which hot water is received in the interior from said heat exchange casing for heat exchange with flame and combustion gas of the interior of said firebox.
Abstract:
Wafer level packages and methods of fabricating the same are provided. In one embodiment, one of the methods comprises forming semiconductor chips having a connection pad on a wafer, patterning a bottom surface of the wafer to form a trench under the connection pad, patterning a bottom surface of the trench to form a via hole exposing the bottom surface of the connection pad, and forming a connecting device connected to the connection pad through the via hole. The invention provides a wafer level package having reduced thickness, lower fabrication costs, and increased reliability compared to conventional packages.
Abstract:
A stack package of the present invention is made by stacking at least two area array type chip scale packages. Each chip scale package of an adjacent pair of chip scale packages is attached to the other in a manner that the ball land pads of the upper stacked chip scale package face in the opposite direction to those of the lower stacked chip scale package, and the circuit patterns of the upper stacked chip scale package are electrically connected to the those of the lower stacked chip scale package by, for example, connecting boards. Therefore, it is possible to stack not only fan-out type chip scale packages, but to also efficiently stack ordinary area array type chip scale packages.
Abstract:
Provided are a wafer level chip scale package in which a redistribution process is applied at a wafer level, a manufacturing method thereof, and a semiconductor chip module including the wafer level chip scale package. The wafer level chip scale package includes a semiconductor chip having a bonding pad, a first insulating layer disposed on the semiconductor chip so as to expose the bonding pad, a redistribution line disposed on the exposed bonding pad and the first insulating layer, a sacrificial layer disposed below a redistribution pad of the redistribution line, a second insulating layer disposed on the redistribution line so as to expose the redistribution pad and including a crack inducement hole disposed beside the sacrificial layer, and an external connection terminal attached to the redistribution pad.
Abstract:
Provided is a semiconductor device having a cooling path on its bottom surface. The stack-type semiconductor device having a cooling path comprises a stack-type semiconductor chip comprising a first semiconductor chip and a second semiconductor chip. The first semiconductor chip comprises a first surface in which a circuit unit is formed and a second surface in which a first cooling path is formed, and the second semiconductor chip comprises a first surface in which a circuit unit is formed and a second surface in which a second cooling path is formed. The second surface of the first semiconductor chip and the second surface of the second semiconductor chip are bonded to each other, and a third cooling path is formed in the middle of the stack-type semiconductor chip using the first and second cooling paths. Warpage of the stack-type semiconductor device is suppressed and heat is easily dissipated.
Abstract:
A wafer level chip scale package capable of reducing parasitic capacitances between a rerouting and the metal wiring of a wafer, and a method for manufacturing the same are provided. An embodiment of the wafer level chip scale package includes a wafer arranged with a plurality of bonding pads and an insulating member formed on the wafer so that the bonding pads are exposed. A rerouting is further formed on the insulating member in contact with the exposed bonding pads and an external connecting terminal is electrically connected to a portion of the rerouting. Here, the insulating member overlapping the rerouting is provided with a plurality of spaces in which air is trapped.