Abstract:
The invention is directed to methods for preparing artificial heart valves by preconditioning a matrix seeded with endothelial cells and smooth muscle cells differentiated from isolated progenitor cells. These cell seeded matrices are exposed to fluid conditions that mimic blood flow through the heart to produce tissue engineered heart valves that are analogous to native heart valves.
Abstract:
The invention is directed to methods of inducing cell recruitment and tissue regeneration at a target site in a subject. It is also based, in part, on the discovery that a subject's own biologic resources and environmental conditions can be used for in situ tissue regeneration and thereby reduce or eliminate the need for donor cell procurement and ex vivo manipulation of such donor cells. Methods are disclosed for recruitment of a subject's own stem cells to a target region by inducing a sustained positive pressure at a target site, such as the kidney, thereby increasing the number of pluripotent cells capable of differentiating to regenerate the target tissue.
Abstract:
A method of producing organized skeletal muscle tissue from precursor muscle cells in vitro comprises: (a) providing precursor muscle cells on a support in a tissue media; then (b) cyclically stretching and relaxing the support at least twice along a first axis during a first time period; and then (c) optionally but preferably maintaining the support in a substantially static position during a second time period; and then (d) repeating steps (b) and (c) for a number of times sufficient to enhance the functionality of the tissue formed on the support and/or produce organized skeletal muscle tissue on the solid support from the precursor muscle cells.
Abstract:
The present invention provides a system and method of maintaining and/or increasing cell viability by downregulating cellular metabolic rate under hypoxic conditions, wherein the availability of adenosine or derivatives thereof in the cell is increased and/or prolonged. The present invention also relates to a system and method of prolonging the survival of implanted cells that are under hypoxic condition until host neovascularization is achieved, wherein the availability of adenosine or derivatives thereof in the cell is increased and/or prolonged. The present invention also provides a system and method of maintaining and/or increasing cell viability by downregulating cellular metabolic rate under hypoxic conditions, wherein at least one purine metabolism enzyme inhibitor is applied to the cell.
Abstract:
The present application relates to biomimetic three-dimensional (3D) scaffolds, constructs and methods of making the same. The three-dimensional scaffold can include a sacrificial internal cast and a durable external scaffold material, wherein the durable external scaffold material comprises a biocompatible material which completely surrounds the sacrificial internal cast and wherein the sacrificial internal cast be removed to yield a branching 3D network of hollow, vessel-like tubes that substantially mimics a native tissue or organ.
Abstract:
The invention is directed to methods and compositions for obtaining uniform sized muscle fiber fragments for transplantation. These muscle fiber fragments are able to reconstitute into long fibers that are oriented along native muscle. The implanted muscle cells integrate with native vascular and neural network, as confirmed by histology and immunohistochemistry. This invention is particularly advantageous because autologous muscle can be harvested from a donor site, processed and injected into target sites in the operating room. The fragmented muscle fibers can be readily integrated within the host.
Abstract:
The invention is directed to methods and compositions for obtaining uniform sized muscle fiber fragments for transplantation. These muscle fiber fragments are able to reconstitute into long fibers that are oriented along native muscle. The implanted muscle cells integrate with native vascular and neural network, as confirmed by histology and immunohistochemistry. This invention is particularly advantageous because autologous muscle can be harvested from a donor site, processed and injected into target sites in the operating room. The fragmented muscle fibers can be readily integrated within the host.