Abstract:
A semiconductor structure is disclosed. The semiconductor structure includes a substrate having a scribe line region. A material layer is formed on the scribe line region and has a rectangular region defined therein. The rectangular region has a pair of first edges parallel with a widthwise direction of the scribe line region and a pair of second edges parallel with a lengthwise direction of the scribe line region. A pair of first alignment features is formed in the material layer along the first edges, and a pair of second alignment features is formed in the material layer along the second edges. The space between the pair of first alignment features is larger than a space between the pair of the second alignment features.
Abstract:
A semiconductor pattern for monitoring overlay and critical dimension at post-etching stage is provided in the present invention, which include a first inverted-T shaped pattern with a base portion and a middle portion extending from the base portion and a second pattern adjacent and spaced apart from the base portion of the first inverted-T shaped pattern, wherein the first inverted-T shaped pattern and the second pattern are composed of a plurality of spacer patterns spaced apart from each other.
Abstract:
A manufacturing method of a metal gate structure is provided. First, a substrate covered by an interlayer dielectric is provided. A gate trench is formed in the interlayer dielectric, wherein a gate dielectric layer is formed in the gate trench. A silicon-containing work function layer is formed on the gate dielectric layer in the gate trench. Finally, the gate trench is filled up with a conductive metal layer.
Abstract:
A method for filling a trench with a metal layer is disclosed. A deposition apparatus having a plurality of supporting pins is provided. A substrate and a dielectric layer disposed thereon are provided. The dielectric layer has a trench. A first deposition process is performed immediately after the substrate is placed on the supporting pins to form a metal layer in the trench, wherein during the first deposition process a temperature of the substrate is gradually increased to reach a predetermined temperature. When the temperature of the substrate reaches the predetermined temperature, a second deposition process is performed to completely fill the trench with the metal layer. The present invention further provides a semiconductor device having an aluminum layer with a reflectivity greater than 1, wherein the semiconductor device is formed by using the method.
Abstract:
The method for forming a semiconductor structure includes first providing a substrate. Then, a TiN layer is formed on the substrate at a rate between 0.3 and 0.8 angstrom/second. Finally, a poly-silicon layer is formed directly on the TiN layer. Since the TiN in the barrier layer is formed at a low rate so as to obtain a good quality, the defects in the TiN layer or the defects on the above layer, such as gate dummy layer or gate cap layer, can be avoided.
Abstract:
An alignment system includes a light source for emitting a light. An alignment mark is disposed on a substrate for receiving the light. The alignment mark includes a first pattern and a second pattern disposed on the substrate. The first pattern includes a first region and a second region. The second pattern includes a third region and a fourth region. The first region and the third region are symmetrical with respective to a symmetrical axis. The second region and the fourth region are symmetrical with respective to the symmetrical axis. The first region includes first mark lines parallel to each other. The second region includes second mark lines parallel to each other. A first pitch is disposed between the first mark lines adjacent to each other. A second pitch is disposed between the second mark lines adjacent to each other. The first pitch is different from the second pitch.
Abstract:
A semiconductor structure is disclosed. The semiconductor structure includes a substrate having a scribe line region. A material layer is formed on the scribe line region and has a rectangular region defined therein. The rectangular region has a pair of first edges parallel with a widthwise direction of the scribe line region and a pair of second edges parallel with a lengthwise direction of the scribe line region. A pair of first alignment features is formed in the material layer along the first edges, and a pair of second alignment features is formed in the material layer along the second edges. The space between the pair of first alignment features is larger than a space between the pair of the second alignment features.
Abstract:
A semiconductor device and a method of fabricating the same, the semiconductor device includes a plurality of fin shaped structures, a trench, a spacing layer and a dummy gate structure. The fin shaped structures are disposed on a substrate. The trench is disposed between the fin shaped structures. The spacing layer is disposed on sidewalls of the trench, wherein the spacing layer has a top surface lower than a top surface of the fin shaped structures. The dummy gate structure is disposed on the fin shaped structures and across the trench.
Abstract:
A semiconductor device and a method of fabricating the same, the semiconductor device includes a plurality of fin shaped structures, a trench, a spacing layer and a dummy gate structure. The fin shaped structures are disposed on a substrate. The trench is disposed between the fin shaped structures. The spacing layer is disposed on sidewalls of the trench, wherein the spacing layer has a top surface lower than a top surface of the fin shaped structures. The dummy gate structure is disposed on the fin shaped structures and across the trench.
Abstract:
A semiconductor structure and a manufacturing method for the same are disclosed. The semiconductor structure includes a first gate structure, a second gate structure and a second dielectric spacer. Each of the first gate structure and the second gate structure adjacent to each other includes a first dielectric spacer. The second dielectric spacer is on one of opposing sidewalls of the first gate structure and without being disposed on the dielectric spacer of the second gate structure.