Abstract:
A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.
Abstract:
A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.
Abstract:
A semiconductor process includes the following steps. A dielectric layer is formed on a substrate, where the dielectric layer has at least a dishing from a first top surface. A shrinkable layer is formed to cover the dielectric layer, where the shrinkable layer has a second top surface. A treatment process is performed to shrink a part of the shrinkable layer according to a topography of the second top surface, thereby flattening the second top surface.
Abstract:
A semiconductor process includes the following steps. A dielectric layer is formed on a substrate, where the dielectric layer has at least a dishing from a first top surface. A shrinkable layer is formed to cover the dielectric layer, where the shrinkable layer has a second top surface. A treatment process is performed to shrink a part of the shrinkable layer according to a topography of the second top surface, thereby flattening the second top surface.
Abstract:
A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.
Abstract:
A planarization method includes providing a substrate having a semiconductor structure formed thereon. A dielectric layer is formed on the substrate, and a mask layer is formed on the dielectric layer. A first chemical mechanical polishing process is performed to remove a portion of the mask layer thereby forming an opening directly over the semiconductor structure and exposing the dielectric layer. A first etching process is performed to anisotropically remove a portion of the dielectric layer from the opening. The mask layer is then removed and a second chemical mechanical polishing process is then performed.
Abstract:
A method for manufacturing a semiconductor device and a device manufactured by the same are provided. According to the embodiment, a substrate having at least a first area with a plurality of first gates and a second area with a plurality of second gates is provided, wherein the adjacent first gates and the adjacent second gates separated by an insulation, and a top surface of the insulation has a plurality of recesses. Then, a capping layer is formed over the first gate, the second gates and the insulation, and filling the recesses. The capping layer is removed until reaching the top surface of the insulation, thereby forming the insulating depositions filling up the recesses, wherein the upper surfaces of the insulating depositions are substantially aligned with the top surface of the insulation.
Abstract:
A method for manufacturing a semiconductor device and a device manufactured by the same are provided. According to the embodiment, a substrate having at least a first area with a plurality of first gates and a second area with a plurality of second gates is provided, wherein the adjacent first gates and the adjacent second gates separated by an insulation, and a top surface of the insulation has a plurality of recesses. Then, a capping layer is formed over the first gate, the second gates and the insulation, and filling the recesses. The capping layer is removed until reaching the top surface of the insulation, thereby forming the insulating depositions filling up the recesses, wherein the upper surfaces of the insulating deposition are substantially aligned with the top surface of the insulation.