GATE STRUCTURES IN SEMICONDUCTOR DEVICES

    公开(公告)号:US20230057278A1

    公开(公告)日:2023-02-23

    申请号:US17406879

    申请日:2021-08-19

    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a gate opening on the fin structure, forming an interfacial oxide layer on the fin structure, forming a first dielectric layer over the interfacial oxide layer, forming a dipole layer between the interfacial oxide layer and the first dielectric layer, forming a second dielectric layer on the first dielectric layer, forming a work function metal (WFM) layer on the second dielectric layer, and forming a gate metal fill layer on the WFM layer. The dipole layer includes ions of first and second metals that are different from each other. The first and second metals have electronegativity values greater than an electronegativity value of a metal or a semiconductor of the first dielectric layer.

    GATE STRUCTURES IN SEMICONDUCTOR DEVICES

    公开(公告)号:US20230040346A1

    公开(公告)日:2023-02-09

    申请号:US17701402

    申请日:2022-03-22

    Abstract: A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The semiconductor device includes a first gate structure and a second gate structure. The first gate structure includes a first interfacial oxide (IO) layer, a first high-K (HK) dielectric layer disposed on the first interfacial oxide layer, and a first dipole layer disposed at an interface between the first IL layer and the first HK dielectric layer. The HK dielectric layer includes a rare-earth metal dopant or an alkali metal dopant. The second gate structure includes a second IL layer, a second HK dielectric layer disposed on the second IL layer, and a second dipole layer disposed at an interface between the second IL layer and the second HK dielectric layer. The second HK dielectric layer includes a transition metal dopant and the rare-earth metal dopant or the alkali metal dopant.

    WORK FUNCTION LAYERS FOR TRANSISTOR GATE ELECTRODES

    公开(公告)号:US20220077296A1

    公开(公告)日:2022-03-10

    申请号:US17532062

    申请日:2021-11-22

    Abstract: The embodiments described herein are directed to a method for the fabrication of transistors with aluminum-free n-type work function layers as opposed to aluminum-based n-type work function layers. The method includes forming a channel portion disposed between spaced apart source/drain epitaxial layers and forming a gate stack on the channel portion, where forming the gate stack includes depositing a high-k dielectric layer on the channel portion and depositing a p-type work function layer on the dielectric layer. After depositing the p-type work function layer, forming without a vacuum break, an aluminum-free n-type work function layer on the p-type work function layer and depositing a metal on the aluminum-free n-type work function layer. The method further includes depositing an insulating layer to surround the spaced apart source/drain epitaxial layers and the gate stack.

    SELF-ALIGNED METAL COMPOUND LAYERS FOR SEMICONDUCTOR DEVICES

    公开(公告)号:US20210083120A1

    公开(公告)日:2021-03-18

    申请号:US16572255

    申请日:2019-09-16

    Abstract: The present disclosure relates to methods for forming a semiconductor device. The method includes forming a substrate and forming first and second spacers on the substrate. The method includes depositing first and second self-assembly (SAM) layers respectively on sidewalls of the first and second spacers and depositing a layer stack on the substrate and between and in contact with the first and second SAM layers. Depositing the layer stack includes depositing a ferroelectric layer and removing the first and second SAM layers. The method further includes depositing a metal compound layer on the ferroelectric layer. Portions of the metal compound layer are deposited between the ferroelectric layer and the first or second spacers. The method also includes depositing a gate electrode on the metal compound layer and between the first and second spacers.

Patent Agency Ranking