摘要:
In a method of manufacturing a photo mask for lithography, circuit pattern data are acquired. A pattern density, which is a total pattern area per predetermined area, is calculated from the circuit pattern data. Dummy pattern data for areas having pattern density less than a threshold density are generated. Mask drawing data is generated from the circuit pattern data and the dummy pattern data. By using an electron beam from an electron beam lithography apparatus, patterns are drawn according to the mask drawing data on a resist layer formed on a mask blank substrate. The drawn resist layer is developed using a developing solution. Dummy patterns included in the dummy pattern data are not printed as a photo mask pattern when the resist layer is exposed with the electron beam and is developed.
摘要:
A structure including an EUV mask and a pellicle attached to the EUV mask. The pellicle includes a pellicle frame and a plurality of pellicle membrane layers attached to the pellicle frame. The plurality of pellicle membrane layers include at least one core pellicle membrane layer and an additional pellicle membrane layer is disposed on the at least one core pellicle membrane layer. In some embodiments, the additional pellicle membrane layer is a material having a thermal emissivity greater than 0.2, a transmittance greater than 80%, and a refractive index (n) for 13.5 nanometer source of greater than 0.9.
摘要:
The present disclosure describes a method to form alignment marks on or in the top layer of an extreme ultraviolet (EUV) mask blank without the use of photolithographic methods. For example, the method can include forming a metal structure on the top layer of the EUV mask blank by dispensing a hexacarbonylchromium vapor on the top layer of the EUV mask and exposing the hexacarbonylchromium vapor to an electron-beam. The hexacarbonylchromium vapor is decomposed to form the metal structure at an area which is proximate to where the hexacarbonylchromium vapors interact with the electron-beam. In another example, the method can include forming a patterned structure in the top layer of an EUV mask blank with the use of an etcher aperture and an etching process.
摘要:
A method for fabricating a pellicle includes forming a first dielectric layer over a back surface of a substrate. After forming the first dielectric layer, and in some embodiments, a graphene layer is formed over a front surface of the substrate. In some examples, after forming the graphene layer, the first dielectric layer is patterned to form an opening in the first dielectric layer that exposes a portion of the back surface of the substrate. Thereafter, while using the patterned first dielectric layer as a mask, an etching process may be performed to the back surface of the substrate to form a pellicle having a pellicle membrane that includes the graphene layer.
摘要:
A method includes depositing a first material layer over a first substrate; and depositing a graphene layer over the first material layer. The method further includes depositing an amorphous silicon layer over the graphene layer and bonding the amorphous silicon layer to a second substrate, thereby forming an assembly. The method further includes annealing the assembly, thereby converting the amorphous silicon layer to a silicon oxide layer. The method further includes removing the first substrate from the assembly and removing the first material layer from the assembly, thereby exposing the graphene layer.
摘要:
A pellicle structure, a pellicle-mask structure, and a method for forming the pellicle structure are provided. The pellicle structure includes a pellicle film made of a carbon-based material. In addition, the pellicle film is configured to protect a mask structure in a lithography process. The pellicle-mask structure includes a mask substrate having a mask pattern formed over the mask substrate and the pellicle frame disposed on the mask substrate. The pellicle-mask structure further includes the pellicle film disposed on the pellicle frame.
摘要:
A lithography system for an extreme ultra violet (EUV) mask is provided. The lithography system includes a coupling module. The coupling module includes at least one mask contact element configured to touch a peripheral area of the EUV mask. The lithography system also includes an ammeter having an end electrically connected to the EUV mask through the at least one mask contact element and another end connected to a ground potential. The ammeter includes a sensor configured to measure a current conducting from the EUV mask to the ground potential and a compensation circuit configured to provide a compensation current that is opposite to the current measured by the sensor.
摘要:
The present disclosure describes a method of patterning a semiconductor wafer using extreme ultraviolet lithography (EUVL). The method includes receiving an EUVL mask that includes a substrate having a low temperature expansion material, a reflective multilayer over the substrate, a capping layer over the reflective multilayer, and an absorber layer over the capping layer. The method further includes patterning the absorber layer to form a trench on the EUVL mask, wherein the trench has a first width above a target width. The method further includes treating the EUVL mask with oxygen plasma to reduce the trench to a second width, wherein the second width is below the target width. The method may also include treating the EUVL mask with nitrogen plasma to protect the capping layer, wherein the treating of the EUVL mask with the nitrogen plasma expands the trench to a third width at the target width.
摘要:
An extreme ultraviolet mask including a substrate, a reflective multilayer stack on the substrate and a patterned absorber layer on the reflective multilayer stack is provided. The patterned absorber layer includes an alloy comprising tantalum and at least one alloying element. The at least one alloying element includes at least one transition metal element or at least one Group 14 element.
摘要:
In a method of manufacturing a reflective mask, a photo resist layer is formed over a mask blank. The mask blank includes a substrate, a reflective multilayer on the substrate, a capping layer on the reflective multilayer, an absorber layer on the capping layer and a hard mask layer, and the absorber layer is made of Cr, CrO or CrON. The photo resist layer is patterned, the hard mask layer is patterned by using the patterned photo resist layer, the absorber layer is patterned by using the patterned hard mask layer, and an additional element is introduced into the patterned absorber layer to form a converted absorber layer.