Abstract:
In examples, a power device comprises a first wide bandgap semiconductor die including a high-side transistor; a second wide bandgap semiconductor die including a low-side transistor; and a conductive device coupled to the first and second wide bandgap semiconductor dies. The conductive device comprises a first layer including a first metal member having fingers at first and second ends of the first metal member, a second metal member having fingers interleaved with fingers of the first metal member at the first end, and a third metal member having fingers interleaved with fingers of the first metal member at the second end. The conductive device also comprises multiple layers in vertical alignment with the first layer, the first, second, and third metal members extending through the multiple layers. The conductive device also comprises a dielectric material covering the first layer and the multiple layers. The power device comprises a connection layer coupling the conductive device to each of the first and second wide bandgap semiconductor dies, with the connection layer including the first, second, and third metal members, and with the first metal member having connection layer fingers at the first and second ends of the first metal member. The second metal member has connection layer fingers interleaved with connection layer fingers of the first metal member at the first end, and the third metal member has connection layer fingers interleaved with connection layer fingers of the first metal member at the second end.
Abstract:
In examples, a semiconductor package comprises a conductive terminal; a semiconductor die including a device side having circuitry formed therein, the device side facing toward the conductive terminal; and a substrate coupled to the conductive terminal and to the device side of the semiconductor die. The substrate includes a first metal layer coupled to first and second vias extending toward and coupled to either the device side of the semiconductor die or the conductive terminal. The substrate includes a second metal layer electrically isolated from the first metal layer by an insulation layer between the first and second metal layers, the second metal layer coupled to a third via extending toward and coupled to either the conductive terminal or the semiconductor die. The first and second metal layers form a Marchand balun.
Abstract:
A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.
Abstract:
In some examples, a semiconductor package includes a semiconductor die; a conductive member coupled to the semiconductor die; and a multi-layer package substrate. The multi-layer package substrate includes a first horizontal metal layer to provide a ground connection; a second horizontal metal layer above the first horizontal metal layer; vertical members coupling to the first and second horizontal metal layers; and a mold compound covering the first and second horizontal metal layers and the vertical members. The first horizontal metal layer, the second horizontal metal layer, and the vertical members together form a structure including a conductive strip coupled to the conductive member, a transition member coupled to the conductive strip, a waveguide coupled to the transition member, and a horn antenna coupled to the waveguide.
Abstract:
In examples, a semiconductor package comprises a semiconductor substrate including a device side having circuitry formed therein. The package also includes a conductive layer positioned above the semiconductor substrate; a patch antenna coupled to the conductive layer and to the device side of the semiconductor substrate; and a mold compound covering the patch antenna. The mold compound has a relative permittivity ranging from 3.4 to 3.5 and a loss tangent ranging from 0.0025 to 0.013.
Abstract:
A routable lead frame (RLF) substrate has a conductive layer having first- and second-side traces having first fingers and second fingers, respectively, which are interdigitated with each other. A via layer is over the conductive layer. A first-side conductive via of the via layer is conductively coupled to the first-side trace. A second-side conductive via of the via layer is conductively coupled to the second-side trace. Dielectric molding material is disposed between the interdigitated fingers of the conductive layer and between the first-side conductive via and the second-side conductive via. The fingers and vias form an interdigital capacitor (IDC) useful in impedance matching and filtering.
Abstract:
In some examples, a direct current (DC)-DC power converter package comprises a controller, a conductive member, and a first field effect transistor (FET) coupled to the controller and having a first source and a first drain, the first FET coupled to a first portion of the conductive member. The package also comprises a second FET coupled to the controller and having a second source and a second drain, the second FET coupled to a second portion of the conductive member, the first and second portions of the conductive member being non-overlapping in a horizontal plane. The first and second FETs are non-overlapping.
Abstract:
A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.