Abstract:
A semiconductor device having a wide depletion region for increasing the breakdown voltage of the device includes an epitaxial layer of a first conductive type. An anode electrode and a cathode electrode are arranged on the epitaxial layer to be separated from each other. A first drift layer of the first conductive type formed in the epitaxial layer. A Schottky contact area is at a region of contact between the anode electrode and the first drift layer. An impurity region of a second conductive type is different from the first conductive type at the epitaxial layer. An insular impurity region is formed below the Schottky contact area.
Abstract:
A method of fabricating a semiconductor device is disclosed comprising the steps of: providing a substrate having a first region, a second region and a plurality of gate electrodes which are formed on the first and second regions of the substrate; forming a mask film to expose the first region of the substrate while covering the second region of the substrate, such that the mask film has a negative lateral profile at a boundary between the first and second regions of the substrate; forming sigma trenches in the first region of the substrate by etching the first region of the substrate using the mask film and the gate electrodes as a mask; and forming an epitaxial layer in each of the sigma trenches.
Abstract:
According to one embodiment, a scheduling method for load balancing in an electronic device such as a server when performing multiple transcoding operations includes performing a first transcoding operation in order to transmit at least one moving image file to a first terminal. The server receives a request from a second terminal to transmit at least one moving image file while performing the first transcoding. The server performs a second transcoding operation in order to transmit the requested moving image file to the second terminal. The server monitors output frame rates of the first transcoding operation and the second transcoding operation, to control the output frame rates.
Abstract:
A status expression system and method operating the same are provided for presenting a state of the mobile phone by means of a character agent. A status expression system of the present invention includes a memory for storing a plurality of character quotients, information on at least one state transition model, and resources for presenting the character; a character controller for updating the character quotients according to events occurred in the mobile phone, determining a state by analyzing the character quotients and referring to the state transition model, and formatting the state using the resources assigned for the state of the character; and a display for presenting the character with the resources in the state.
Abstract:
In a method of detecting inhomogeneity of a layer, an incident light may be irradiated to at least two regions of the layer at a first incident angle position. First reflected lights reflected from the two regions of the layer may be sensed. The incident light may be irradiated to the at least two regions of the layer at a second incident angle position. Second reflected lights reflected from the two regions of the layer may be sensed. The first reflected lights and the second reflected lights may be compared with each other to obtain the inhomogeneity of the layer. Thus, the layer having a spot may be found.
Abstract:
A character agent function is added to a wireless terminal and an avatar user interface (UI) for generating and processing an event is expressed when an event occurs in the wireless terminal, such that call and message-related events occurring in the wireless terminal can be expressed through the character agent function.
Abstract:
In a method of detecting inhomogeneity of a layer, an incident light may be irradiated to at least two regions of the layer at a first incident angle position. First reflected lights reflected from the two regions of the layer may be sensed. The incident light may be irradiated to the at least two regions of the layer at a second incident angle position. Second reflected lights reflected from the two regions of the layer may be sensed. The first reflected lights and the second reflected lights may be compared with each other to obtain the inhomogeneity of the layer. Thus, the layer having a spot may be found.