Abstract:
A power management integrated circuit includes a buck converter that includes a first metal oxide semiconductor field effect transistor (MOSFET) having a first conductivity type and a second MOSFET having a second conductivity type. The first MOSFET includes transistor sets that are two-dimensionally arranged. Each transistor set includes source regions, drain regions, and gate electrodes between the source regions and the drain regions. Each source region and each drain region includes an impurity region having the first conductivity type, and each source region further includes segment regions having the second conductivity type. A first source region is spaced apart from a second source region in a first direction, and a number of the segment regions in the first source region is different from a number of the segment regions in the second source region.
Abstract:
A semiconductor device having a wide depletion region for increasing the breakdown voltage of the device includes an epitaxial layer of a first conductive type. An anode electrode and a cathode electrode are arranged on the epitaxial layer to be separated from each other. A first drift layer of the first conductive type formed in the epitaxial layer. A Schottky contact area is at a region of contact between the anode electrode and the first drift layer. An impurity region of a second conductive type is different from the first conductive type at the epitaxial layer. An insular impurity region is formed below the Schottky contact area.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A handover method for a terminal according to one embodiment of the present disclosure may include: receiving, from a source cell, a message including information on one or more target cells for performing a fast handover; and performing a fast handover by reusing a radio bearer based on the received information.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A handover method for a terminal according to one embodiment of the present disclosure may include: receiving, from a source cell, a message including information on one or more target cells for performing a fast handover; and performing a fast handover by reusing a radio bearer based on the received information.
Abstract:
A semiconductor device includes a power metal-oxide-semiconductor (MOS) transistor including a semiconductor substrate, an impurity region on the semiconductor substrate, the impurity region having a first conductivity, a drift region in the impurity region, the drift region having the first conductivity, a body region in the impurity region adjacent to the drift region, the body region having a second conductivity different from the first conductivity, a drain extension insulating layer on the drift region, a gate insulating layer and a gate electrode sequentially stacked across a portion of the body region and a portion of the drift region, a drain extension electrode on the drain extension insulating layer, a drain region contacting a side of the drift region opposite to the body region, the drain region having the first conductivity, and a source region in the body region, the source region having the second conductivity.
Abstract:
A semiconductor device includes a semiconductor substrate of a first conductivity type, a buried layer a second conductivity type different from the first conductivity type on the substrate and an epitaxial layer of the second conductivity type on the buried layer. The device further includes a pocket well of the first conductivity type in the epitaxial layer, a first drift region in the epitaxial layer at least partially overlapping the pocket well, a second drift region in the epitaxial layer and spaced apart from the first drift region, and a body region of the first conductivity type in the pocket well. A gate electrode is disposed on the body region, the pocket well and the first drift region and has an edge overlying the epitaxial region between the first and second drift regions.
Abstract:
A semiconductor device includes a semiconductor substrate of a first conductivity type, a buried layer a second conductivity type different from the first conductivity type on the substrate and an epitaxial layer of the second conductivity type on the buried layer. The device further includes a pocket well of the first conductivity type in the epitaxial layer, a first drift region in the epitaxial layer at least partially overlapping the pocket well, a second drift region in the epitaxial layer and spaced apart from the first drift region, and a body region of the first conductivity type in the pocket well. A gate electrode is disposed on the body region, the pocket well and the first drift region and has an edge overlying the epitaxial region between the first and second drift regions.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A handover method for a terminal according to one embodiment of the present disclosure may include: receiving, from a source cell, a message including information on one or more target cells for performing a fast handover; and performing a fast handover by reusing a radio bearer based on the received information.
Abstract:
Semiconductor devices are provided. The semiconductor devices may include a substrate and a transistor on the substrate. The semiconductor devices may include a first guard ring of first conductivity type in the substrate adjacent the transistor. The semiconductor devices may include a second guard ring of second conductivity type opposite the first conductivity type in the substrate adjacent the first guard ring. Related semiconductor systems are also provided.
Abstract:
Semiconductor devices are provided. The semiconductor devices may include a substrate and a transistor on the substrate. The semiconductor devices may include a first guard ring of first conductivity type in the substrate adjacent the transistor. The semiconductor devices may include a second guard ring of second conductivity type opposite the first conductivity type in the substrate adjacent the first guard ring. Related semiconductor systems are also provided.