Abstract:
A semiconductor device includes a series of metal routing layers and a complementary pair of planar field-effect transistors (FETs) on an upper metal routing layer of the metal routing layers. The upper metal routing layer is M3 or higher. Each of the FETs includes a channel region of a crystalline material. The crystalline material may include polycrystalline silicon. The upper metal routing layer M3 or higher may include cobalt.
Abstract:
A system of unipolar digital logic. Ferroelectric field effect transistors having channels of a first polarity, are combined, in circuits, with simple field effect transistors having channels of the same polarity, to form logic gates and/or memory cells.
Abstract:
A method for fabricating a fin field effect transistor (finFET) device with a strained channel. During fabrication, after the fin is formed, a dummy gate is deposited on the fin, and processed, e.g., by plasma doping and annealing, to cause stress in the dummy gate. Deep source drain (SD) recesses are formed, resulting in strain in the channel, and SD structures are formed to anchor the ends of the fin. The dummy gate is then removed.
Abstract:
A method of forming a field effect transistor includes forming a punchthrough region having a first conductivity type in a substrate, forming an epitaxial layer having the first conductivity type on the substrate, patterning the epitaxial layer to form a fin that protrudes from the substrate, forming a dummy gate and gate sidewall spacers on the fin defining preliminary source and drain regions of the fin on opposite sides of the dummy gate, removing the preliminary source and drain regions of the fin, implanting second conductivity type dopant atoms into exposed portions of the substrate and the punchthrough region, and forming source and drain regions having the second conductivity type on opposite sides of the dummy gate and the gate sidewall spacers.
Abstract:
A method of forming a field effect transistor includes forming a punchthrough region having a first conductivity type in a substrate, forming an epitaxial layer having the first conductivity type on the substrate, patterning the epitaxial layer to form a fin that protrudes from the substrate, forming a dummy gate and gate sidewall spacers on the fin defining preliminary source and drain regions of the fin on opposite sides of the dummy gate, removing the preliminary source and drain regions of the fin, implanting second conductivity type dopant atoms into exposed portions of the substrate and the punchthrough region, and forming source and drain regions having the second conductivity type on opposite sides of the dummy gate and the gate sidewall spacers.