Abstract:
A thin film transistor substrate includes a gate electrode disposed on a substrate; a semiconductor layer disposed on the substrate that partially overlaps the gate electrode and includes an oxide semiconductor material; and a source electrode and a drain electrode disposed on the semiconductor layer, where the drain electrode is spaced apart from the source electrode. The source electrode and the drain electrode each include a barrier layer and a main wiring layer, the a main wiring layer is disposed on the barrier layer, and the barrier layer includes a first metal layer disposed on the semiconductor layer, and a second metal layer disposed on the first metal layer.
Abstract:
A thin film transistor array panel includes: a gate line on a substrate and including a gate electrode; a first gate insulating layer on the substrate and the gate line, the first gate insulting layer including a first portion adjacent to the gate line and a second portion overlapping the gate line and having a smaller thickness than that of the first portion; a second gate insulating layer on the first gate insulating layer; a semiconductor layer on the second gate insulating layer; a source electrode and a drain electrode spaced apart from each other on the semiconductor layer; a passivation layer on the second gate insulating layer, the source electrode and the drain electrode; and a pixel electrode on the passivation layer and connected with the drain electrode. The first gate insulating layer and the second gate insulating layer have stress in opposite directions from each other.
Abstract:
Provided are a thin-film transistor (TFT) substrate, a method of manufacturing the same, and a display device including the same. The TFT substrate includes a gate electrode formed on a substrate, a gate insulating layer formed on the gate electrode, an oxide semiconductor pattern formed on the gate insulating layer, a source electrode formed on the oxide semiconductor pattern, a drain electrode formed on the oxide semiconductor pattern to face the source electrode, and a pixel electrode formed on the gate insulating layer.
Abstract:
A substrate-treating apparatus includes a liquid-providing part, a first liquid-removing knife and a returning part. The liquid-providing part provides a first liquid chemical for cleaning a substrate that includes a metal pattern and a photoresist pattern on the metal pattern, and for removing an etchant that remains on the substrate. The first liquid-removing knife sprays a second liquid chemical in a direction inclined and opposite to a returning direction of the substrate, so as to remove the first liquid chemical, the first liquid chemical including a metal precipitate. The returning part returns the substrate from the liquid-providing part toward the first liquid-removing knife in the returning direction.
Abstract:
A thin film transistor substrate includes a gate electrode disposed on a substrate; a semiconductor layer disposed on the substrate that partially overlaps the gate electrode and includes an oxide semiconductor material; and a source electrode and a drain electrode disposed on the semiconductor layer, where the drain electrode is spaced apart from the source electrode. The source electrode and the drain electrode each include a barrier layer and a main wiring layer, the a main wiring layer is disposed on the barrier layer, and the barrier layer includes a first metal layer disposed on the semiconductor layer, and a second metal layer disposed on the first metal layer.
Abstract:
A thin film transistor substrate includes a gate electrode disposed on a substrate; a semiconductor layer disposed on the substrate that partially overlaps the gate electrode and includes an oxide semiconductor material; and a source electrode and a drain electrode disposed on the semiconductor layer, where the drain electrode is spaced apart from the source electrode. The source electrode and the drain electrode each include a barrier layer and a main wiring layer, the a main wiring layer is disposed on the barrier layer, and the barrier layer includes a first metal layer disposed on the semiconductor layer, and a second metal layer disposed on the first metal layer.
Abstract:
A thin film transistor array panel includes a gate line, a gate insulating layer that covers the gate line, a semiconductor layer that is disposed on the gate insulating layer, a data line and drain electrode that are disposed on the semiconductor layer, a passivation layer that covers the data line and drain electrode and has a contact hole that exposes a portion of the drain electrode, and a pixel electrode that is electrically connected to the drain electrode through the contact hole. The data line and drain electrode each have a double layer that includes a lower layer of titanium and an upper layer of copper, and the lower layer is wider than the upper layer, and the lower layer has a region that is exposed. The gate insulating layer may have a step shape.
Abstract:
A thin film transistor includes a gate electrode, an active pattern overlapping with the gate electrode and including a semiconductive oxide, and a source metal pattern disposed on the active pattern and including a source electrode and a drain electrode spaced apart from the source electrode. The active pattern underlaps an entire portion of a lower surface of the source metal pattern and minimally protrudes beyond lateral ends of the source metal pattern due to the active pattern having sidewall taper angles that are substantially greater than corresponding and adjacent sidewall taper angles of the overlying source metal pattern. Thus parasitic capacitance may be reduced and performance enhanced.
Abstract:
A thin film transistor array panel includes a gate line, a gate insulating layer that covers the gate line, a semiconductor layer that is disposed on the gate insulating layer, a data line and drain electrode that are disposed on the semiconductor layer, a passivation layer that covers the data line and drain electrode and has a contact hole that exposes a portion of the drain electrode, and a pixel electrode that is electrically connected to the drain electrode through the contact hole. The data line and drain electrode each have a double layer that includes a lower layer of titanium and an upper layer of copper, and the lower layer is wider than the upper layer, and the lower layer has a region that is exposed. The gate insulating layer may have a step shape.