Abstract:
An optical module includes a mirror unit including a mirror holder and a mirror on the mirror holder, the mirror holding including a first plate; a center guide supporting the mirror unit; and an actuator configured to rotate the mirror unit about a rotation axis. The actuator includes a first actuator at the first plate and second and third actuators at second and third plates, respectively, and spaced from each other in a direction parallel to the rotation axis, and the first actuator is configured to be acted upon by the second and third actuators to rotate the mirror unit about the rotation axis.
Abstract:
A display apparatus includes a display region and a peripheral region adjacent to the display region. The display apparatus further includes a first flexible substrate (FFS), a driving circuit (DC), a conductive pattern (CP), a conductive line, a light-emitting device, and a support substrate. The FFS includes a first surface and a second surface opposite the first surface. The second surface includes, in the peripheral region, a cavity extending into the FFS. The DC is on the first surface and includes at least one transistor. The CP is in the cavity and is partially exposed by the cavity. The conductive line electrically connects the CP to the DC. The light-emitting device is in the display region and is electrically connected to the DC. The support substrate is on the second surface. In a view normal to the second surface, the support substrate is spaced apart from the CP.
Abstract:
A display apparatus includes a display region and a peripheral region adjacent to the display region. The display apparatus further includes a first flexible substrate (FFS), a driving circuit (DC), a conductive pattern (CP), a conductive line, a light-emitting device, and a support substrate. The FFS includes a first surface and a second surface opposite the first surface. The second surface includes, in the peripheral region, a cavity extending into the FFS. The DC is on the first surface and includes at least one transistor. The CP is in the cavity and is partially exposed by the cavity. The conductive line electrically connects the CP to the DC. The light-emitting device is in the display region and is electrically connected to the DC. The support substrate is on the second surface. In a view normal to the second surface, the support substrate is spaced apart from the CP.
Abstract:
A laser crystallizing apparatus includes a first light source unit configured to emit a first input light having a linearly polarized laser beam shape. A second light source unit is configured to emit a second input light having a linearly polarized laser beam shape. A polarization optical system is configured to rotate the first input light and/or the second input light at a predetermined rotation angle. An optical system is configured to convert the first input light and the second input light, which pass through the polarization optical system, into an output light. A target substrate is seated on a stage and output light is directed onto the target substrate. A monitoring unit is configured to receive the first input light or the second input light from the polarization optical system and measure a laser beam quality thereof.
Abstract:
A method of manufacturing a display apparatus includes forming a plurality of display units including bending areas on a mother substrate. Each of the plurality of display units include a bending area configured to be bent about a bending axis. A protection film is attached to a lower surface of the mother substrate. The protection film includes a protection film base and an adhesive layer. An opening or a groove is formed corresponding to the bending area of each of the plurality of display units by removing at least a portion of the protection film. The mother substrate and the protection film are cut to separate the plurality of display units from each other. The mother substrate is bent about the bending axis. The removing of the at least a portion of the protection film is performed by a laser beam.
Abstract:
A laser polycrystallization apparatus including: a light source for emitting a laser beam; a diffraction grating for receiving the laser beam from the light source, changing a path and a magnitude of the received laser beam, and outputting the changed laser beam; a light split portion for splitting the laser beam received from the diffraction grating; and a light superposition portion for superposing the split laser beams received from the light split portion and irradiating the superposed split laser beams to a substrate. An angle between the laser beam irradiated to an incidence surface of the diffraction grating from the light source and a line substantially perpendicular to an emission surface of the diffraction grating is an acute angle.
Abstract:
A method of cutting a substrate includes: forming a first protective layer on a first surface of the substrate; forming a removal area where a portion of the first protective layer is removed by irradiating the first protective layer at the portion of the first protective layer with a first laser beam; and forming a cutting area by removing a portion of the substrate by irradiating the substrate with a second laser beam at the removal area, after irradiating the first protective layer with the first laser beam.
Abstract:
A method of cutting a substrate includes: forming a first protective layer on a first surface of the substrate; forming a removal area where a portion of the first protective layer is removed by irradiating the first protective layer at the portion of the first protective layer with a first laser beam; and forming a cutting area by removing a portion of the substrate by irradiating the substrate with a second laser beam at the removal area, after irradiating the first protective layer with the first laser beam.