Abstract:
A laser processing apparatus includes a light source configured to generate a laser beam, and a light converging optical system configured to converge laser beam to a focal point at an object to be processed, the light converging optical system including a through-hole optical element and a composite optical element under the through-hole optical element, wherein the through-hole optical element includes a first recess portion configured as a concave mirror at a lower surface of the through-hole optical element, and wherein an upper surface of the composite optical element is convex and includes a first region configured to reflect the laser beam and a second region configured to transmit the laser beam.
Abstract:
A method for detecting a defect of a barrier film includes preparing a device including an electrode and a barrier film covering the electrode, allowing a charged medium to contact a surface of the barrier film, and measuring a change in a flow of current between the charged medium and the electrode.
Abstract:
An apparatus for monitoring deposition rate, an apparatus including the same, for depositing an organic layer, a method of monitoring deposition rate, and a method of manufacturing an organic light emitting display apparatus using the same, are provided. The deposition rate monitoring apparatus for measuring deposition rate of a deposition material discharged from a deposition source, includes: a light source for irradiating light having a wavelength within a photoexcitation bandwidth of the deposition material; a first optical system for irradiating the light emitted from the light source toward the discharged deposition material; a second optical system for collecting the light emitted from the deposition material; and a first light sensor for detecting the amount of the light which is emitted from the deposition material and collected in the second optical system.
Abstract:
A method of forming an organic light emitting pattern of an organic electro-luminescence display according to an exemplary embodiment of the present invention includes preparing a display substrate in which a region where a first organic light emitting material is to be formed is defined, preparing a temporal transfer substrate (TTS) that is a transfer subject on which the first organic light emitting material is to be transferred, forming the first organic light emitting material on the temporal transfer substrate, applying heat to a portion other than a first region of the temporal transfer substrate to remove the first organic light emitting material formed on the portion other than the first region, disposing the temporal transfer substrate and the display substrate to closely face each other, and applying heat to the temporal transfer substrate to transfer the organic light emitting material on the display substrate.
Abstract:
An inspection method includes irradiating a laser to an inspection target, reflecting a first emitted laser from a transmission layer included in the inspection target, reflecting a second emitted laser from a scattering layer included in the inspection target, detecting a reference image from the second emitted laser; and measuring a separation distance obtained from the first emitted laser, based on the reference image.
Abstract:
A laser processing apparatus according to an exemplary embodiment includes: a light source generating a laser beam; and a light converging unit converging the laser beam to a focal point on an object to be processed, wherein the light converging unit includes a first optical element including a through hole penetrating the first optical element; a second optical element including a first region reflecting the laser beam and a second region transmitting the laser beam; and a third optical element including a focusing lens as a convex lens, a lower surface of the first optical element is a concave mirror, and an upper surface of the second optical element is convex and a lower surface thereof is concave.
Abstract:
An inspection method includes irradiating a laser to an inspection target, reflecting a first emitted laser from a transmission layer included in the inspection target, reflecting a second emitted laser from a scattering layer included in the inspection target, detecting a reference image from the second emitted laser; and measuring a separation distance obtained from the first emitted laser, based on the reference image.
Abstract:
A shearing interferometer includes first and second shearing plates disposed opposite to each other. The first shearing plate includes a first front surface and a first back surface, and splits an input beam input to the first front surface into first and second beams reflected at the first front and back surfaces, respectively. The second shearing plate includes a second front surface and a second back surface. The second shearing plate splits the first beam into third and fourth beams reflected at the second front and back surfaces, respectively, and splits the second beam into fifth and sixth beams reflected at the second front and back surfaces, respectively. Each of the first and second shearing plates has a thickness which limits a phase delay between the fourth beam and the fifth beam to a degree determined to allow interference to occur between the fourth beam and the fifth beam.
Abstract:
A method for performing a laser crystallization is provided. The method includes generating a laser beam, refracting the laser beam to uniformize an intensity of the laser beam at a focal plane of the laser beam. The laser beam whose intensity is uniformized is applied into an object substrate mounted with a stage.
Abstract:
A method for performing a laser crystallization is provided. The method includes generating a laser beam, refracting the laser beam to uniformize an intensity of the laser beam at a focal plane of the laser beam. The laser beam whose intensity is uniformized is applied into an object substrate mounted with a stage.