Abstract:
Three dimensional semiconductor memory devices and methods of fabricating the same are provided. According to the method, sacrificial layers and insulating layers are alternately and repeatedly stacked on a substrate, and a cutting region penetrating an uppermost sacrificial layer of the sacrificial layers is formed. The cutting region is filled with a non sacrificial layer. The insulating layers and the sacrificial layers are patterned to form a mold pattern. The mold pattern includes insulating patterns, sacrificial patterns, and the non sacrificial layer in the cutting region. The sacrificial patterns may be replaced with electrodes. The related semiconductor memory device is also provided.
Abstract:
A method of fabricating a semiconductor memory device includes alternately and repeatedly stacking sacrificial layers and insulating layers on a substrate, forming an active pattern penetrating the sacrificial layers and the insulating layers, continuously patterning the insulating layers and the sacrificial layers to form a trench, removing the sacrificial layers exposed in the trench to form recess regions exposing a sidewall of the active pattern, forming an information storage layer on the substrate, forming a gate conductive layer on the information storage layer, such that the gate conductive layer fills the recess regions and defines an empty region in the trench, the empty region being surrounded by the gate conductive layer, and performing an isotropic etch process with respect to the gate conductive layer to form gate electrodes in the recess regions, such that the gate electrodes are separated from each other.
Abstract:
Methods of fabricating a three-dimensional semiconductor memory device are provided. A method may include forming a mold structure on a substrate including channel regions and a non-channel region between the channel regions, and forming, on the mold structure, a multilayered mask layer including a first mask layer, an etch stop layer, and a second mask layer that are sequentially stacked. The multilayered mask layer may include mask holes exposing the mold structure in the channel regions, dummy mask holes exposing the first mask layer in the non-channel region, and buffer spacers covering sidewalls of the second mask layer exposed by the mask holes and the dummy mask holes. The method may include etching the mold structure using the multilayered mask layer as an etch mask to form channel holes in the channel regions.
Abstract:
Methods of forming semiconductor devices may be provided. A method of forming a semiconductor device may include patterning first and second material layers to form a first through region exposing a substrate. The method may include forming a first semiconductor layer in the first through region on the substrate and on sidewalls of the first and second material layers. In some embodiments, the method may include forming a buried layer filling the first through region on the first semiconductor layer. In some embodiments, the method may include removing a portion of the buried layer to form a second through region between the sidewalls of the first and second material layers. Moreover, the method may include forming a second semiconductor layer in the second through region.
Abstract:
Methods of forming semiconductor devices may be provided. A method of forming a semiconductor device may include patterning first and second material layers to form a first through region exposing a substrate. The method may include forming a first semiconductor layer in the first through region on the substrate and on sidewalls of the first and second material layers. In some embodiments, the method may include forming a buried layer filling the first through region on the first semiconductor layer. In some embodiments, the method may include removing a portion of the buried layer to form a second through region between the sidewalls of the first and second material layers. Moreover, the method may include forming a second semiconductor layer in the second through region.
Abstract:
Methods of forming semiconductor devices may be provided. A method of forming a semiconductor device may include patterning first and second material layers to form a first through region exposing a substrate. The method may include forming a first semiconductor layer in the first through region on the substrate and on sidewalls of the first and second material layers. In some embodiments, the method may include forming a buried layer filling the first through region on the first semiconductor layer. In some embodiments, the method may include removing a portion of the buried layer to form a second through region between the sidewalls of the first and second material layers. Moreover, the method may include forming a second semiconductor layer in the second through region.
Abstract:
Disclosed is a three-dimensional semiconductor memory device comprising intergate dielectric layers and electrode layers alternately stacked on a substrate, a vertical semiconductor pattern that penetrate the intergate dielectric layers and the electrode layers and extends into the substrate, blocking dielectric patterns between the vertical semiconductor pattern and the electrode layers, a tunnel dielectric layer between the blocking dielectric patterns and the vertical semiconductor pattern and in contact with the blocking dielectric patterns and simultaneously with the intergate dielectric layers, and first charge storage patterns between the blocking dielectric patterns and the tunnel dielectric layer. One of the first charge storage patterns is in contact with top and bottom surfaces of one of the blocking dielectric patterns.
Abstract:
A semiconductor device includes a peripheral circuit structure; a lower stack disposed on the peripheral circuit structure and an upper stack disposed in the lower stack including a plurality of lower insulating layers and a plurality of lower word lines alternately stacked with the lower insulating layers; a plurality of channel structures extending through the lower stack and the upper stack in the cell array area; a pair of separation insulating layers extending vertically through the lower stack and the upper stack and extending in a horizontal direction, the pair of separation insulating layers being spaced apart from each other in a vertical direction; and a word line separation layer disposed at an upper portion of the lower stack and crossing the pair of separation insulating layers when viewed in a plan view, the word line separation layer extending vertically through at least one of the lower word lines.
Abstract:
Disclosed is a three-dimensional semiconductor memory device comprising intergate dielectric layers and electrode layers alternately stacked on a substrate, a vertical semiconductor pattern that penetrate the intergate dielectric layers and the electrode layers and extends into the substrate, blocking dielectric patterns between the vertical semiconductor pattern and the electrode layers, a tunnel dielectric layer between the blocking dielectric patterns and the vertical semiconductor pattern and in contact with the blocking dielectric patterns and simultaneously with the intergate dielectric layers, and first charge storage patterns between the blocking dielectric patterns and the tunnel dielectric layer. One of the first charge storage patterns is in contact with top and bottom surfaces of one of the blocking dielectric patterns.
Abstract:
A semiconductor device includes a peripheral circuit structure disposed on a substrate; a lower stack disposed on the peripheral circuit structure and an upper stack disposed in the lower stack, the lower stack including a plurality of lower insulating layers and a plurality of lower word lines alternately stacked with the lower insulating layers; a plurality of channel structures extending through the lower stack and the upper stack in the cell array area; a pair of separation insulating layers extending vertically through the lower stack and the upper stack and extending in a horizontal direction, the pair of separation insulating layers being spaced apart from each other in a vertical direction; and a word line separation layer disposed at an upper portion of the lower stack and crossing the pair of separation insulating layers when viewed in a plan view, the word line separation layer extending vertically through at least one of the lower word lines.