Abstract:
Disclosed are semiconductor memory devices and methods of fabricating the same. The semiconductor memory devices may include a plurality of layers sequentially stacked on a substrate in a vertical direction, each of the plurality of layers including a bit line extending in a first direction and a semiconductor pattern extending from the bit line in a second direction traversing the first direction, a gate electrode extending through the plurality of layers and including a vertical portion extending through the semiconductor patterns and a first horizontal portion extending from the vertical portion and facing a first surface of one of the semiconductor patterns, and a data storing element electrically connected to the one of the semiconductor patterns. The data storing element includes a first electrode electrically connected to the one of the semiconductor patterns, a second electrode on the first electrode, and a dielectric layer between the first and second electrodes.
Abstract:
A semiconductor device includes a polycrystalline semiconductor layer on a substrate, first and second stacks on the polycrystalline semiconductor layer, the first and second stacks extending in a first direction, a separation trench between the first and second stacks and extending in the first direction, the separation trench separating the first and second stacks in a second direction crossing the first direction, and vertical channel structures vertically passing through each of the first and second stacks, wherein the polycrystalline semiconductor layer includes a first grain region and a second grain region in contact with each other, the first and second grain region being adjacent to each other along the second direction, and wherein each of the first and second grain regions includes a plurality of crystal grains, each crystal grain having a longitudinal axis parallel to the second direction.
Abstract:
Methods of forming a semiconductor device are provided. The methods may include forming first and second layers that are alternately and repeatedly stacked on a substrate, and forming an opening penetrating the first and second layers. The methods may also include forming a first semiconductor pattern in the opening. The methods may additionally include forming an insulation pattern on the first semiconductor pattern. The methods may further include forming a second semiconductor pattern on the insulation pattern. The methods may also include providing dopants in the first semiconductor pattern. Moreover, the methods may include thermally treating a portion of the first semiconductor pattern to form a third semiconductor pattern.
Abstract:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
Abstract:
In a vertical-type semiconductor device, a method of manufacturing the same and a method of operating the same, the vertical-type semiconductor device includes a single-crystalline semiconductor pattern having a pillar shape provided on a substrate, a gate surrounding sidewalls of the single-crystalline semiconductor pattern and having an upper surface lower than an upper surface of the single-crystalline semiconductor pattern, a mask pattern formed on the upper surface of the gate, the mask pattern having an upper surface coplanar with the upper surface of the single-crystalline semiconductor pattern, a first impurity region in the substrate under the single-crystalline semiconductor pattern, and a second impurity region under the upper surface of the single-crystalline semiconductor pattern. The vertical-type pillar transistor formed in the single-crystalline semiconductor pattern may provide excellent electrical properties. The mask pattern is not provided on the upper surface of the single-crystalline semiconductor pattern in the second impurity region, to thereby reduce failures of processes.
Abstract:
A semiconductor memory device includes a stack structure comprising a plurality of layers vertically stacked on a substrate, each layer including a semiconductor pattern, a gate electrode extending in a first direction on the semiconductor pattern, and a data storage element electrically connected to the semiconductor pattern, a plurality of vertical insulators penetrating the stack structure, the vertical insulators arranged in the first direction, and a bit line provided at a side of the stack structure and extending vertically. The bit line electrically connects the semiconductor patterns which are stacked. Each of the vertical insulators includes first and second vertical insulators adjacent to each other. The gate electrode includes a connection portion disposed between the first and second vertical insulators.
Abstract:
A semiconductor memory device may include a bit line extending in a first direction, a first conductive pattern extending in a second direction intersecting the first direction, a semiconductor pattern connecting the bit line and the first conductive pattern, a second conductive pattern including an insertion portion in the first conductive pattern, and a dielectric layer between the first conductive pattern and the second conductive pattern. The insertion portion of the second conductive pattern may have a width which increases as a distance from the semiconductor pattern increases.
Abstract:
A semiconductor memory device is disclosed. The device includes a peripheral circuit structure on a substrate, a semiconductor layer on the peripheral circuit structure, an electrode structure on the semiconductor layer, the electrode structure including electrodes stacked on the semiconductor layer, a vertical channel structure penetrating the electrode structure and being connected to the semiconductor layer, a separation structure penetrating the electrode structure, extending in a first direction, and horizontally dividing the electrode of the electrode structure into a pair of electrodes, an interlayered insulating layer covering the electrode structure, and a through contact penetrating the interlayered insulating layer and being electrically connected to the peripheral circuit structure.
Abstract:
A semiconductor memory device including first-first conductive lines on a substrate; second-first conductive lines on the first-first conductive lines; first contacts connected to the first-first conductive lines; and second contacts connected to the second-first conductive lines, wherein the first-first conductive lines protrude in a first direction beyond the second-first conductive lines; the first-first conductive lines include first regions having a first thickness, second regions having a second thickness, the second thickness being greater than the first thickness, and third regions having a third thickness, the third thickness being smaller than the first thickness and smaller than the second thickness, and the second regions of the first-first conductive lines are between the first regions of the first-first conductive lines and the third regions of the first-first conductive lines.
Abstract:
A semiconductor memory device may include a bit line extending in a first direction, a first conductive pattern extending in a second direction intersecting the first direction, a semiconductor pattern connecting the bit line and the first conductive pattern, a second conductive pattern including an insertion portion in the first conductive pattern, and a dielectric layer between the first conductive pattern and the second conductive pattern. The insertion portion of the second conductive pattern may have a width which increases as a distance from the semiconductor pattern increases.