Abstract:
An organic light emitting diode display device includes a substrate, a buffer layer, a first circuit structure, a sub-pixel structure, and a first signal wire. The substrate includes a display region including a plurality of sub-pixel regions and a peripheral region surrounding the display region. The buffer layer is disposed in the display region and peripheral region on the substrate. The first circuit structure is disposed in the peripheral region on the buffer layer. The sub-pixel structure is disposed in each of the sub-pixel regions on the first circuit structure. The first signal wire is disposed in the peripheral region between the substrate and the buffer layer, and overlaps the first circuit structure when viewed from a plan view in a thickness direction of the substrate.
Abstract:
A scan driver includes a substrate, a first transistor on the substrate, the first transistor including a first active pattern and a first gate electrode, the first active pattern including first and second regions, and a first channel region between the first and second regions, a second transistor on the first transistor, the second transistor including a second active pattern and a second gate electrode, the second active pattern including third and fourth regions, and a second channel region between the third and fourth regions, first and second electrodes on the second transistor, the first electrode and the second electrode electrically connected to the first region and the second region, respectively, and third and fourth electrodes on the second transistor, the third electrode and the fourth electrode electrically connected to the third region and the fourth region, respectively, wherein the first and third electrodes are electrically connected.
Abstract:
A display device includes a first transistor including a first channel region, a first gate electrode overlapping the first channel region, and a first electrode connected to a node receiving a driving voltage, a second transistor electrically connected to the first electrode of the first transistor, the second transistor including a second channel region and a second gate electrode overlapping the first channel region and receiving a scan signal, a light emitting element electrically connected to a second electrode of the first transistor, a first conductive line overlapping the first gate electrode with the first channel region in between and receiving a variable voltage different from the driving voltage, and a second conductive line overlapping the second gate electrode with the second channel region in between and receiving the scan signal.
Abstract:
A display device including: a substrate; a light emitting element on the substrate; a pixel circuit between the substrate and the light emitting element, wherein the pixel circuit is electrically connected to the light emitting element, and includes a plurality of transistors; and a conductive pattern including an electrode portion and a wiring portion for supplying a voltage to the electrode portion, wherein the electrode portion overlaps an active pattern of at least one transistor among the plurality of transistors, wherein the conductive pattern is disposed between the substrate and the active pattern, and wherein a thickness of the wiring portion is greater than a thickness of the electrode portion.
Abstract:
A display apparatus includes: a first substrate including a polymer resin; a first barrier layer on the first substrate and including a portion doped with ions, wherein the portion includes an upper surface of the first barrier layer; a second substrate on the upper surface of the first barrier layer and including a polymer resin; a buffer layer on the second substrate; a first thin-film transistor on the buffer layer; and a light-emitting diode electrically connected to the first thin-film transistor.
Abstract:
A display device may include a substrate, an organic light emitting element on the substrate, a pixel circuit between the substrate and the organic light emitting element, electrically connected to the organic light emitting element, and including a first transistor and a second transistor, a first metal layer between the substrate and the pixel circuit, overlapping the first transistor, and configured to receive a first voltage, and a second metal layer between the substrate and the pixel circuit, overlapping the second transistor, and configured to receive a second voltage different from the first voltage.
Abstract:
A display substrate includes a first conductive layer on a base substrate, a first insulation layer on the first conductive layer, a second conductive layer on the first insulation layer, a second insulation layer on the second conductive layer, and a third conductive layer on the second insulation layer. The third conductive layer is connected to the first conductive layer and the second conductive layer through a contact hole passing through the first insulation layer, the second conductive layer, and the second insulation layer. A sidewall of the contact hole has a stepped shape.
Abstract:
A display apparatus has a display area and a non-display area around the display area, the display apparatus includes, in the non-display area, a first power line, a driving circuit on a layer over the first power line, and a second power line electrically connected to the first power line and on a same layer on which one electrode of the driving circuit is arranged.
Abstract:
A thin film transistor includes a polysilicon layer on a substrate, which includes a first area between second and third areas. A polysilicon layer is formed on the substrate, and a source electrode and a drain electrode are formed on the polysilicon layer in the first and third areas. Each of the source electrode and the drain electrode includes a metal silicide layer adjacent the polysilicon layer.
Abstract:
Provided is a semiconductor device including a buffer layer that is on a substrate and includes an inclined surface; a crystalline silicon layer that is on the buffer layer; a gate electrode that is on the crystalline silicon layer while being insulated from the crystalline silicon layer; and a source electrode and a drain electrode that are each electrically connected to the crystalline silicon layer, the angle between the substrate and the inclined surface being in a range of about 17.5 degrees to less than about 70 degrees.