Abstract:
A liquid crystal display includes a first substrate including a plurality of pixels, a second substrate facing the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. At least one of the pixels includes a thin film transistor disposed on a first insulating substrate, an insulating layer overlapping the thin film transistor, and a pixel electrode disposed on the insulating layer. A contact hole is formed through the insulating layer to expose a first electrode of the thin film transistor, the pixel electrode is electrically connected to the first electrode through the contact hole, and the pixel electrode has a single-layer in an area where the contact hole is formed and a double-layer on the insulating layer.
Abstract:
Provided are a display apparatus and a method of manufacturing the display apparatus. The display apparatus includes a support substrate including a first support substrate and a second support substrate spaced apart from each other, a substrate disposed on the support substrate, a display layer disposed on a portion of the substrate disposed on the first support substrate, and a thin-film encapsulation layer disposed to cover the display layer, wherein a surface of the first support substrate and a surface of the second support substrate facing each other include a slope surface.
Abstract:
A display device including a substrate; a sealing member surrounding a part of a transmission area of the substrate; a plurality of pixels in a display area of the substrate; an encapsulation substrate facing the substrate with the sealing member between the encapsulation substrate and the substrate; a transparent material layer between the substrate and the encapsulation substrate and corresponding to the transmission area; and a light-shielding portion on the encapsulation substrate and corresponding to the sealing member. A width of the light-shielding portion is greater than a width of the sealing member.
Abstract:
A thin film transistor (TFT) substrate, a flat display apparatus including the TFT substrate, a method of manufacturing the TFT substrate, and a method of manufacturing the flat display apparatus, the thin film transistor (TFT) substrate including a substrate; a first gate electrode on the substrate, the first gate electrode including a first branch electrode and a second branch electrode that are spaced apart from one another; a polysilicon layer on the first gate electrode and insulated from the first gate electrode; and a second gate electrode on the polysilicon layer, the second gate electrode being insulated from the polysilicon layer and overlying the first and second branch electrodes.
Abstract:
A display device including a substrate; a sealing member surrounding a part of a transmission area of the substrate; a plurality of pixels in a display area of the substrate; an encapsulation substrate facing the substrate with the sealing member between the encapsulation substrate and the substrate; a transparent material layer between the substrate and the encapsulation substrate and corresponding to the transmission area; and a light-shielding portion on the encapsulation substrate and corresponding to the sealing member. A width of the light-shielding portion is greater than a width of the sealing member.
Abstract:
A display device including a substrate; a sealing member surrounding a part of a transmission area of the substrate; a plurality of pixels in a display area of the substrate; an encapsulation substrate facing the substrate with the sealing member between the encapsulation substrate and the substrate; a transparent material layer between the substrate and the encapsulation substrate and corresponding to the transmission area; and a light-shielding portion on the encapsulation substrate and corresponding to the sealing member. A width of the light-shielding portion is greater than a width of the sealing member.
Abstract:
Provided is a semiconductor device including a buffer layer that is on a substrate and includes an inclined surface; a crystalline silicon layer that is on the buffer layer; a gate electrode that is on the crystalline silicon layer while being insulated from the crystalline silicon layer; and a source electrode and a drain electrode that are each electrically connected to the crystalline silicon layer, the angle between the substrate and the inclined surface being in a range of about 17.5 degrees to less than about 70 degrees.
Abstract:
A display device includes: a first substrate having a display area and a non-display area on one side of the display area; a second substrate arranged opposite the first substrate; a display element arranged on the display area, the display element including a pixel electrode, an intermediate layer arranged on the pixel electrode, and an opposite electrode arranged on the intermediate layer; a power supply line arranged on the non-display area; and a conductive layer arranged on the power supply line and including the same material as the pixel electrode.
Abstract:
A thin-film transistor includes a metal electrode and a zinc oxide-based barrier film that blocks a material from diffusing out of the metal electrode. The zinc oxide-based barrier film is made of zinc oxide doped with indium oxide, the content of the indium oxide ranging, by weight, 1 to 50 percent of the zinc oxide-based barrier film. A zinc oxide-based sputtering target for deposition of a barrier film of a thin-film transistor is made of zinc oxide doped with indium oxide, the content of the indium oxide ranging, by weight, 1 to 50 percent of the zinc oxide-based sputtering target.
Abstract:
A liquid crystal display includes a first substrate including a plurality of pixels, a second substrate facing the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. At least one of the pixels includes a thin film transistor disposed on a first insulating substrate, an insulating layer overlapping the thin film transistor, and a pixel electrode disposed on the insulating layer. A contact hole is formed through the insulating layer to expose a first electrode of the thin film transistor, the pixel electrode is electrically connected to the first electrode through the contact hole, and the pixel electrode has a single-layer in an area where the contact hole is formed and a double-layer on the insulating layer.