Abstract:
Disclosed is a circuit having a differential stage comprising a pair or transistors. The transistors are biased by respective bias transistors. Each bias transistor has a respective feedback network configured to reduce transconductance of the bias transistor, to increase a gain of the differential stage.
Abstract:
Apparatus includes: a mixer configured to mix local a oscillator signal with a baseband signal and output a radio frequency (RF) signal; a first load coupled to the mixer and tuned to an operating frequency; and a second load coupled to the mixer and tuned to a predetermined multiple of the operating frequency.
Abstract:
A class AB amplifier may include an input stage, a first folded cascode stage, a second folded cascode stage, and a class AB output stage. In some embodiments, the class AB output stage may provide differential output signals. The common-mode voltage of the differential output signals may be controlled via a correction signal coupled to a selected folded cascode stage. The correction signal may control the common-mode voltage of the differential output signals by altering bias currents within the selected folded cascode stage. The other cascode stage may include bias currents controlled by relatively fixed bias voltages.
Abstract:
Disclosed is circuitry for operating a switch which sees high voltage swings across its source, gate, drain, and bulk terminals. The circuitry generates one or more bias voltages in proportion to an input voltage swing. The one or more bias voltages may be used to bias the gate and bulk terminals to provide reliable and improved turn OFF performance in the switch.
Abstract:
Exemplary embodiments are related to wideband matching devices. A device may include a primary winding including a first plurality of inductors in series and a first switch coupled to the primary winding and configured to tune the primary winding to a frequency band of a plurality of frequency bands. The device may also include a secondary winding including a second plurality of inductors in series and a second switch coupled to the secondary winding and configured to tune the secondary winding to the frequency band.
Abstract:
A notch filter including an inductor-capacitor tuning circuit is disclosed. The inductor-capacitor tuning circuit may determine a frequency response of the notch filter in accordance with an associated resonant frequency. In some exemplary embodiments, the inductor-capacitor circuit may include a differential inductor divided at a symmetry point and a variable capacitor coupled to the differential inductor at the symmetry point.
Abstract:
Apparatus includes: a mixer configured to mix local a oscillator signal with a baseband signal and output a radio frequency (RF) signal; a first load coupled to the mixer and tuned to an operating frequency; and a second load coupled to the mixer and tuned to a predetermined multiple of the operating frequency.
Abstract:
A receiver front end architecture for intra band carrier aggregation is disclosed. In an exemplary embodiment, an apparatus includes a first transistor having a gate terminal to receive an input signal, drain terminal to output an amplified signal, and a source terminal connected to a signal ground by a source degeneration inductor. The apparatus also includes a second transistor having a source terminal connected to the drain terminal of the first transistor and a drain terminal connected to a first load. The apparatus also includes a third transistor having a gate terminal connected to the drain terminal of the first transistor, a drain terminal connected to a second load and a source terminal connected to a signal ground.