Abstract:
Some features pertain to an integrated device that includes a first substrate, a first solder resist layer coupled to the first substrate, a second solder resist layer coupled to the first solder resist layer, and an opening in the first and second solder resist layers, the opening comprising a sidewall completely covered with the second solder resist layer, where a sidewall of the second solder resist layer covers a sidewall of the first solder resist layer. In some implementations, the opening is at least partially filled with an electrically conductive material. The electrically conductive material includes one of solder and/or an interconnect. The integrated device includes a first interconnect coupled to the electrically conductive material. The first interconnect is one of at least a solder, and/or an interconnect ball. In some implementations, the integrated device includes a pad coupled to the substrate, and a first interconnect coupled to the pad.
Abstract:
Integrated circuit (IC) packages employing split, double-sided IC metallization structures to facilitate a semiconductor die (“IC die”) module employing stacked dice, and related fabrication methods are disclosed. Multiple IC dice in the IC package are stacked and bonded together in a back-to-back, top and bottom IC die configuration in an IC die module, which can minimize the overall height of the IC package. The metallization structure is split between separate top and bottom metallization structures adjacent to respective top and bottom surfaces of the IC die module to facilitate die-to-die and external electrical connections to the dice. The top and bottom metallization structures can be double-sided by exposing substrate interconnects on respective inner and outer surfaces for respective die and external electrical interconnections. In other exemplary aspects, the top and bottom metallization structures can include redistribution layers (RDLs) to provide increased electrical conductivity between die interconnects and substrate interconnects.
Abstract:
A package may include a die proximate to a structure having a substrate with interconnects and a first component coupled to the interconnects. The die may be face up or face down. The package may include a first redistribution layer coupling the die to the interconnects of the structure and a mold compound covering the die and maybe the structure.
Abstract:
An integrated package may be manufactured in a die face up orientation with a component proximate to the attached die by creating a cavity in the mold compound during fabrication. The cavity is created with an adhesive layer on the bottom to hold a component such that the top surface of the component is co-planar with the top surface of the attached die. This may allow backside grinding to take place that will not damage the component because the top surface alignment between the attached die and the component prevents the depth of the cavity from extending into the portion of the package that is ground away.
Abstract:
Some features pertain to a package on package (PoP) device that includes a first package, a first solder interconnect coupled to the first integrated circuit package, and a second package coupled to the first package through the first solder interconnect. The second package includes a first die, a package interconnect comprising a first pad, where the first solder interconnect is coupled to the first pad of the package interconnect. The second package also includes a redistribution portion coupled to the first die and the package interconnect, an encapsulation layer at least partially encapsulating the first die and the package interconnect. The first pad may include a surface that has low roughness. The encapsulation layer may encapsulate the package interconnect such that the encapsulation layer encapsulates at least a portion of the first solder interconnect.
Abstract:
An integrated circuit (IC) package that includes a first die, a wire bond coupled to the first die, a first encapsulation layer that at least partially encapsulates the first die and the wire bond, a second die, a redistribution portion coupled to the second die, and a second encapsulation layer that at least partially encapsulates the second die. In some implementations, the wire bond is coupled to the redistribution portion. In some implementations, the integrated circuit (IC) package further includes a package interconnect that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package further includes a via that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package has a height of about 500 microns (μm) or less.
Abstract:
Some features pertain to an integrated device that includes a first substrate, a first solder resist layer coupled to the first substrate, a second solder resist layer coupled to the first solder resist layer, and an opening in the first and second solder resist layers, the opening comprising a sidewall completely covered with the second solder resist layer, where a sidewall of the second solder resist layer covers a sidewall of the first solder resist layer. In some implementations, the opening is at least partially filled with an electrically conductive material. The electrically conductive material includes one of solder and/or an interconnect. The integrated device includes a first interconnect coupled to the electrically conductive material. The first interconnect is one of at least a solder, and/or an interconnect ball. In some implementations, the integrated device includes a pad coupled to the substrate, and a first interconnect coupled to the pad.