Abstract:
An anti-fuse device includes a first electrode, an insulator on the first electrode, a second electrode on the insulator, and selector logic coupled to the second electrode. The device also includes a conductive path between the first and second electrodes. The conductive path may be configured to provide a hard breakdown for one-time programmable non-volatile data storage.
Abstract:
A magnetic tunnel junction (MTJ) and methods for fabricating a MTJ are described. An MTJ includes a fixed layer and a barrier layer on the fixed layer. Such an MTJ also includes a free layer interfacing with the barrier layer. The free layer has a crystal structure in accordance with the barrier layer. The MTJ further includes an amorphous capping layer interfacing with the free layer.
Abstract:
A method for fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes growing a seed layer on a first electrode of the pMTJ device. The seed layer has a uniform predetermined crystal orientation along a growth axis. The method also includes planarizing the seed layer while maintaining the uniform predetermined crystal orientation of the seed layer.
Abstract:
An MRAM cell may include a magnetic tunneling junction (MTJ). The MTJ includes a pin layer, a barrier layer, a free layer, and a capping layer. The MRAM cell further includes a bidirectional diode selector, directly coupled to an electrode of the MTJ, to enable access to the MTJ.
Abstract:
A magnetic tunnel junction (MTJ) device in a magnetoresistive random access memory (MRAM) and method of making the same are provided to achieve a high tunneling magnetoresistance (TMR), a high perpendicular magnetic anisotropy (PMA), good data retention, and a high level of thermal stability. The MTJ device includes a first free ferromagnetic layer, a synthetic antiferromagnetic (SAF) coupling layer, and a second free ferromagnetic layer, where the first and second free ferromagnetic layers have opposite magnetic moments.
Abstract:
An improved magnetic tunnel junction device and methods for fabricating the improved magnetic tunnel junction device are provided. The provided two-etch process reduces etching damage and ablated material redeposition. In an example, provided is a method for fabricating a magnetic tunnel junction (MTJ). The method includes forming a buffer layer on a substrate, forming a bottom electrode on the substrate, forming a pin layer on the bottom electrode, forming a barrier layer on the pin layer, and forming a free layer on the barrier layer. A first etching includes etching the free layer, without etching the barrier layer, the pin layer, and the bottom electrode. The method also includes forming a top electrode on the free layer, as well as forming a hardmask layer on the top electrode. A second etching includes etching the hardmask layer; the top electrode layer, the barrier layer, the pin layer, and the bottom electrode.
Abstract:
An improved magnetic tunnel junction device and methods for fabricating the improved magnetic tunnel junction device are provided. The provided two-etch process reduces etching damage and ablated material redeposition. In an example, provided is a method for fabricating a magnetic tunnel junction (MTJ). The method includes forming a buffer layer on a substrate, forming a bottom electrode on the substrate, forming a pin layer on the bottom electrode, forming a barrier layer on the pin layer, and forming a free layer on the barrier layer. A first etching includes etching the free layer, without etching the barrier layer, the pin layer, and the bottom electrode. The method also includes forming a top electrode on the free layer, as well as forming a hardmask layer on the top electrode. A second etching includes etching the hardmask layer; the top electrode layer, the barrier layer, the pin layer, and the bottom electrode.
Abstract:
A magnetic tunnel junction (MTJ) device includes a free layer. The MTJ also includes a barrier layer coupled to the free layer. The MTJ also has a fixed layer, coupled to the barrier layer. The fixed layer includes a first synthetic antiferromagnetic (SAF) multilayer having a first perpendicular magnetic anisotropy (PMA) and a first damping constant. The fixed layer also includes a second SAF multilayer having a second perpendicular magnetic anisotropy (PMA) and a second damping constant lower than the first damping constant. The first SAF multilayer is closer to the barrier layer than the second SAF multilayer. The fixed layer also includes a SAF coupling layer between the first and the second SAF multilayers.