Abstract:
Power distribution networks in a three-dimensional (3D) integrated circuit (IC) (3DIC) are disclosed. In one aspect, a voltage drop within a power distribution network in a 3DIC is reduced to reduce unnecessary power dissipation. In a first aspect, interconnect layers devoted to distribution of power within a given tier of the 3DIC are provided with an increased thickness such that a resistance of such interconnect layers is reduced relative to previously used interconnect layers and also reduced relative to other interconnect layers. Further voltage drop reductions may also be realized by placement of vias used to interconnect different tiers, and particularly, those vias used to interconnect the thickened interconnect layers devoted to the distribution of power. That is, the number, position, and/or arrangement of the vias may be controlled in the 3DIC to reduce the voltage drop.
Abstract:
Exemplary embodiments of the invention are directed to systems and method for designing a clock distribution network for an integrated circuit. The embodiments identify critical sources of clock skew, tightly control the timing of the clock and build that timing into the overall clock distribution network and integrated circuit design. The disclosed embodiments separate the clock distribution network (CDN), i.e., clock generation circuitry, wiring, buffering and registers, from the rest of the logic to improve the clock tree design and reduce the area footprint. In one embodiment, the CDN is separated to a separate tier of a 3D integrated circuit, and the CDN is connected to the logic tier(s) via high-density inter-tier vias. The embodiments are particularly advantageous for implementation with monolithic 3D integrated circuits.
Abstract:
The disclosed embodiments comprise a multi-stage circuit operating across different power domains. The multi-stage circuit may be implemented as a master-slave flip-flop circuit integrated with a level shifter that transfers data across different power domains. The master and slave stages of the flip-flop may be split across two tiers of a 3D IC and may include (i) a level shifter across different power domain integrated within the flip-flop circuit, (ii) reduced one-state writing delays by a self-induced power collapsing technique, (iii) splitting flip-flop power supplies in different tiers using monolithic 3D IC technology, and (iv) cross power domain data transfer between 3D IC tiers.
Abstract:
Exemplary embodiments of the invention are directed to systems and method for designing a clock distribution network for an integrated circuit. The embodiments identify critical sources of clock skew, tightly control the timing of the clock and build that timing into the overall clock distribution network and integrated circuit design. The disclosed embodiments separate the clock distribution network (CDN), i.e., clock generation circuitry, wiring, buffering and registers, from the rest of the logic to improve the clock tree design and reduce the area footprint. In one embodiment, the CDN is separated to a separate tier of a 3D integrated circuit, and the CDN is connected to the logic tier(s) via high-density inter-tier vias. The embodiments are particularly advantageous for implementation with monolithic 3D integrated circuits.
Abstract:
A three-dimensional integrated circuit having a dual or multiple power domain is capable of less energy consumption operation under a given clock rate, which results in an enhanced power-performance-area (PPA) envelope. Sequential logic operates under a system clock that determines the system throughput, whereas combinational logic operates in a different power domain to control overall system power including dynamic and static power. The sequential logic and clock network may be implemented in one tier of the three-dimensional integrated circuit supplied with a relatively high power supply voltage, whereas the combinational logic may be implemented in another tier of the three-dimensional integrated circuit supplied with a relatively low power supply voltage. Further pipeline reorganization may be implemented to leverage the system energy consumption and performance to an optimal point.
Abstract:
A three-dimensional (3D) memory cell separation among 3D integrated circuit (IC) (3DIC) tiers is disclosed. Related 3DICs, 3DIC processor cores, and methods are also disclosed. In embodiments disclosed herein, memory read access ports of a memory block are separated from a memory cell in different tiers of a 3DIC. 3DICs achieve higher device packing density, lower interconnect delays, and lower costs. In this manner, different supply voltages can be provided for the read access ports and the memory cell to be able to lower supply voltage for the read access ports. Static noise margins and read/write noise margins in the memory cell may be provided as a result. Providing multiple power supply rails inside a non-separated memory block that increases area can also be avoided.
Abstract:
Multi-level conversion flip-flop circuits for multi-power domain integrated circuits (ICs) and related methods are disclosed. A flip-flop circuit latches a representation of a received input data signal in a lower voltage domain, in a latch circuit in a higher voltage domain without need for separate voltage level shifters. As a result, insertion loss/delay is minimized, thereby increasing performance. In certain aspects, the flip-flop circuits employ a gate-controlled, data control transistor to control activation of the latch circuit. By coupling the input data signal to a gate of the data control transistor, the input data signal in the lower voltage domain is not directly latched into the latch circuit. Instead, the data control transistor is configured to activate the latch circuit to latch a voltage in the higher voltage domain representing a logic value of the input data signal in the lower voltage domain in response to a clock signal.
Abstract:
A three-dimensional (3D) memory cell separation among 3D integrated circuit (IC) (3DIC) tiers is disclosed. Related 3DICs, 3DIC processor cores, and methods are also disclosed. In embodiments disclosed herein, memory read access ports of a memory block are separated from a memory cell in different tiers of a 3DIC. 3DICs achieve higher device packing density, lower interconnect delays, and lower costs. In this manner, different supply voltages can be provided for the read access ports and the memory cell to be able to lower supply voltage for the read access ports. Static noise margins and read/write noise margins in the memory cell may be provided as a result. Providing multiple power supply rails inside a non-separated memory block that increases area can also be avoided.