Abstract:
Devices and methods for monitoring one or more central processing units in real time is disclosed. The method may include monitoring state data associated with the one or more CPUs in real-time, filtering the state data, and at least partially based on filtered state data, selectively altering one or more system settings. A device may include means for monitoring state data associated with the one or more CPUs in real-time, means for filtering the state data, and means for selectively altering one or more system settings at least partially based on filtered state data. A device may also include a sub-sampling circuit configured to receive a hardware core signal from the central processing unit and output a central processing unit state indication, and an infinite impulse response filter connected to the sub-sampling circuit and configured to receive the central processing unit state indication from the sub-sampling circuit.
Abstract:
Various aspects include methods for managing memory subsystems on a computing device. Various aspect methods may include determining a period of time to force a memory subsystem on the computing device into a low power mode, inhibiting memory access requests to the memory subsystem during the determined period of time, forcing the memory subsystem into the low power mode for the determined period of time, and executing the memory access requests to the memory subsystem inhibited during the determined period of time in response to expiration of the determined period of time.
Abstract:
Systems, methods, and computer programs are disclosed for dynamically adjusting memory power state transition timers. One embodiment of a method comprises receiving one or more parameters impacting usage or performance of a memory device coupled to a processor in a computing device. An optimal value is determined for one or more memory power state transition timer settings. A current value is updated for the memory power state transition timer settings with the optimal value.
Abstract:
Various embodiments of methods and systems for temperature compensated memory refresh (“TCMR”) of a dynamic random access memory (“DRAM”) component are disclosed. Embodiments of the solution leverage a memory refresh module located within a memory subsystem to apply a refresh power supply received from a source on the SoC. Advantageously, even though the refresh power supply is received from a source on the SoC according to a certain delivery rate that may not be optimal for each and every bank in the DRAM component, embodiments of the solution are able to apply an effective refresh power supply rate to each bank according to its optimal cycle.
Abstract:
Various embodiments of systems and methods are disclosed for reducing volatile memory standby power in a portable computing device. One such method involves receiving a request for a volatile memory device to enter a standby power mode. One or more compression parameters are determined for compressing content stored in a plurality of banks of the volatile memory device. The stored content is compressed based on the one or more compression parameters to free-up at least one of the plurality of banks. The method disables self-refresh of at least a portion of one or more of the plurality of banks freed-up by the compression during the standby power mode.
Abstract:
Aspects include computing devices, systems, and methods for reorganizing the storage of data in memory to energize less than all of the memory devices of a memory module for read or write transactions. The memory devices may be connected to individual select lines such that a re-order logic may determine the memory devices to energize for a transaction according to a re-ordered memory map. The re-order logic may re-order memory addresses such that memory address provided by a processor for a transaction are converted to the re-ordered memory address according to the re-ordered memory map without the processor having to change its memory address scheme. The re-ordered memory map may provide for reduced energy consumption by the memory devices, or a balance of energy consumption and performance speed for latency tolerant processes.
Abstract:
Methods and devices for refreshing a dynamic memory device, (e.g., DRAM) to eliminate unnecessary page refresh operations. A value in a lookup table for the page may indicate whether valid data including all zeros is present in the page. When the page includes valid data of all zeros, the lookup table value may be set so that refresh, memory read, write and clear accesses of the page may be inhibited and a valid value may be returned. A second lookup table may contain a second value indicating whether a page has been accessed by a page read or write during the page refresh interval. A page refresh, by issuing an ACT−PRE command pair, and a page address may be performed according to the page refresh interval when the second value indicates that page access has not occurred.
Abstract:
Devices and methods for monitoring one or more central processing units in real time are disclosed. The method may include monitoring state data associated with the one or more CPUs in real-time, filtering the state data, and at least partially based on filtered state data, selectively altering one or more system settings. A device may include means for monitoring state data associated with the one or more CPUs in real-time, means for filtering the state data, and means for selectively altering one or more system settings at least partially based on filtered state data. A device may also include a sub-sampling circuit configured to receive a hardware core signal from the central processing unit and output a central processing unit state indication, and an infinite impulse response filter connected to the sub-sampling circuit and configured to receive the central processing unit state indication from the sub-sampling circuit.