Abstract:
The invention relates to an improved apparatus and method for the design and manufacture of MEMS anchoring structures for light modulators in order to address the stresses of beams mounted on them.
Abstract:
The invention relates to a light modulator including a substrate having a surface and a modulation assembly coupled to the substrate that includes a modulation element and a first compliant beam. The first compliant beam includes a first segment that extend away from a first anchor and a second segment that extends back towards the first anchor. The length of the first segment is different than the length of the second segment.
Abstract:
This disclosure provides systems and apparatus for restricting out-of-plane motion during light modulator operation. In one aspect, an apparatus includes a light modulator that has a conductive movable light blocking component supported over a light blocking layer. The light modulator includes an electrostatic actuator that has a drive electrode configured to move the light blocking component laterally with respect to an aperture formed through the light blocking layer. The light modulator further includes an elongated electrode separate from the drive electrode and electrically isolated from the movable light blocking component. The elongated electrode extends alongside a path traveled by the movable light blocking component for substantially the entire length of the path.
Abstract:
This methods and devices described herein relate to displays and methods of manufacturing cold seal fluid-filled displays, including MEMS. The fluid substantially surrounds the moving components of the MEMS display to reduce the effects of stiction and to improve the optical and electromechanical performance of the display. The invention relates to a method for sealing a MEMS display at a lower temperature such that a vapor bubble does not form only at temperatures about 15° C. to about 20° C. below the seal temperature. In some embodiments, the MEMS display apparatus includes a first substrate, a second substrate separated from the first substrate by a gap and supporting an array of light modulators, a fluid substantially filling the gap, a plurality of spacers within the gap, and a sealing material joining the first substrate to the second substrate.
Abstract:
This disclosure provides systems, methods and apparatus for modulating light to form an image on a display. A light modulator in the display may include a substrate, a shutter, a first actuator and a second actuator. The shutter can be configured to selectively obstruct an optical path through the substrate. The first actuator can be configured to move the shutter in a first direction along a first axis in a plane substantially parallel to a plane defined by the substrate, thereby moving the shutter from a first state to a second state. The second actuator can be configured to move the shutter in a second direction along a second axis. The second axis can be substantially orthogonal to the first axis and also within a plane parallel to the substrate. In some implementations, moving the shutter along the second axis moves the shutter into a third state.
Abstract:
This methods and devices described herein relate to displays and methods of manufacturing cold seal fluid-filled displays, including MEMS. The fluid substantially surrounds the moving components of the MEMS display to reduce the effects of stiction and to improve the optical and electromechanical performance of the display. The invention relates to a method for sealing a MEMS display at a lower temperature such that a vapor bubble does not form forms only at temperatures about 15° C. to about 20° C. below the seal temperature. In some embodiments, the MEMS display apparatus includes a first substrate, a second substrate separated from the first substrate by a gap and supporting an array of light modulators, a fluid substantially filling the gap, a plurality of spacers within the gap, and a sealing material joining the first substrate to the second substrate.
Abstract:
This disclosure provides systems, methods and apparatus for providing multiple dielectric coatings for a shutter assembly. The multiple dielectric coatings include an outer dielectric coating and one or more inner dielectric coatings. The outer dielectric coating has an electrical trap density that is lower than electrical trap densities of the one or more inner dielectric coatings. The lower electrical trap density reduces the amount of charge buildup over various surfaces of the shutter assembly. This reduction in charge buildup also reduces electrostatic forces that may cause incorrect operation of the shutter assembly.
Abstract:
Systems, apparatuses and methods are provided for increasing the aperture ratio of a display by increasing the total travel distance of respective light modulating bodies in a display while maintaining fast switching speeds. Increasing the total travel distance allows for a larger aperture ratio in a display, which provides greater power savings and increased display brightness. The total travel distance of a light modulating body includes the distance the body travels from an open position to a closed position, and vice-versa. In one example, the travel distance of a light modulating body (e.g., any of the light modulators as described above) is asymmetric: from a neutral position, the body travels a greater distance in a first direction than in a second direction.
Abstract:
This disclosure provides systems, methods and apparatus for electromechanical systems having sidewalls beams. In one aspect, a device includes a substrate having a first electrode and a second electrode, and a movable shuttle monolithically integrated with the substrate, and having a first wall, a second wall, and a base. The first and second walls each have a first dimension at least four times larger than a second dimension. The first and second walls define substantially parallel vertical sides of the shuttle, and the base is positioned orthogonally to the first and second walls and forms a horizontal bottom of the shuttle, providing structural support to the first and second walls. The first wall and the first electrode define a first capacitor, and the second wall and the second electrode define a second capacitor.