Abstract:
A transistor comprises a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region. The channel region is crystalline and comprises a plurality of vertically-elongated crystal grains that individually are directly against both of the top source/drain region and the bottom source/drain region. Other embodiments, including methods, are disclosed.
Abstract:
A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir. Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sn, and Nb. Other aspects, including method, are disclosed.
Abstract:
A transistor comprises a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region. An upper material is directly above a lower material. The upper material is in at least one of the top source/drain region, the bottom source/drain region, and the channel region. The lower material is in at least one of the top source/drain region, the bottom source/drain region, and the channel region. The upper material comprises 1 atomic percent to 10 atomic percent elemental-form H and 0 total atomic percent to less than 0.1 total atomic percent of one or more noble elements. The lower material comprises 0 atomic percent to less than 1 atomic percent elemental-form H and 0.1 total atomic percent to 10 total atomic percent of one or more noble elements. Other embodiments, including method, are disclosed.
Abstract:
Some embodiments include methods of forming rutile-type titanium oxide. A monolayer of titanium nitride may be formed. The monolayer of titanium nitride may then be oxidized at a temperature less than or equal to about 550° C. to convert it into a monolayer of rutile-type titanium oxide. Some embodiments include methods of forming capacitors that have rutile-type titanium oxide dielectric, and that have at least one electrode comprising titanium nitride. Some embodiments include thermally conductive stacks that contain titanium nitride and rutile-type titanium oxide, and some embodiments include methods of forming such stacks.
Abstract:
Some embodiments include methods of forming rutile-type titanium oxide. A monolayer of titanium nitride may be formed. The monolayer of titanium nitride may then be oxidized at a temperature less than or equal to about 550° C. to convert it into a monolayer of rutile-type titanium oxide. Some embodiments include methods of forming capacitors that have rutile-type titanium oxide dielectric, and that have at least one electrode comprising titanium nitride. Some embodiments include thermally conductive stacks that contain titanium nitride and rutile-type titanium oxide, and some embodiments include methods of forming such stacks.
Abstract:
Some embodiments include a method of forming a capacitor. An opening is formed through a silicon-containing mass to a base, and sidewalls of the opening are lined with protective material. A first capacitor electrode is formed within the opening and has sidewalls along the protective material. At least some of the silicon-containing mass is removed with an etch. The protective material protects the first capacitor electrode from being removed by the etch. A second capacitor electrode is formed along the sidewalls of the first capacitor electrode, and is spaced from the first capacitor electrode by capacitor dielectric. Some embodiments include multi-material structures having one or more of aluminum nitride, molybdenum nitride, niobium nitride, niobium oxide, silicon dioxide, tantalum nitride and tantalum oxide. Some embodiments include semiconductor constructions.
Abstract:
Some embodiments include methods of forming rutile-type titanium oxide. A monolayer of titanium nitride may be formed. The monolayer of titanium nitride may then be oxidized at a temperature less than or equal to about 550° C. to convert it into a monolayer of rutile-type titanium oxide. Some embodiments include methods of forming capacitors that have rutile-type titanium oxide dielectric, and that have at least one electrode comprising titanium nitride. Some embodiments include thermally conductive stacks that contain titanium nitride and rutile-type titanium oxide, and some embodiments include methods of forming such stacks.
Abstract:
A method of forming a vertical transistor comprising a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region comprises, in multiple time-spaced microwave annealing steps, microwave annealing at least the channel region. The multiple time-spaced microwave annealing steps reduce average concentration of elemental-form H in the channel region from what it was before start of the multiple time-spaced microwave annealing steps. The reduced average concentration of elemental-form H is 0.005 to less than 1 atomic percent. Structure embodiments are disclosed.
Abstract:
A method of forming a vertical transistor comprising a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region comprises, in multiple time-spaced microwave annealing steps, microwave annealing at least the channel region. The multiple time-spaced microwave annealing steps reduce average concentration of elemental-form H in the channel region from what it was before start of the multiple time-spaced microwave annealing steps. The reduced average concentration of elemental-form H is 0.005 to less than 1 atomic percent. Structure embodiments are disclosed.
Abstract:
A transistor comprises a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region. An upper material is directly above a lower material. The upper material is in at least one of the top source/drain region, the bottom source/drain region, and the channel region. The lower material is in at least one of the top source/drain region, the bottom source/drain region, and the channel region. The upper material comprises 1 atomic percent to 10 atomic percent elemental-form H and 0 total atomic percent to less than 0.1 total atomic percent of one or more noble elements. The lower material comprises 0 atomic percent to less than 1 atomic percent elemental-form H and 0.1 total atomic percent to 10 total atomic percent of one or more noble elements. Other embodiments, including method, are disclosed.