OPTICAL DEVICE WITH ENHANCED MECHANICAL STRENGTH
    13.
    发明申请
    OPTICAL DEVICE WITH ENHANCED MECHANICAL STRENGTH 有权
    具有增强机械强度的光学装置

    公开(公告)号:US20120213467A1

    公开(公告)日:2012-08-23

    申请号:US13032561

    申请日:2011-02-22

    CPC classification number: G02B6/12007

    Abstract: An optical device implemented on a substrate (such as silicon) is described. This optical device includes a wavelength-sensitive optical component with a high thermal resistance to a surrounding external environment and a low thermal resistance to a localized thermal-tuning mechanism (such as a heater), which modifies a temperature of the wavelength-sensitive optical component, thereby specifying an operating wavelength of the wavelength-sensitive optical component. In particular, the thermal resistance associated with a thermal dissipation path from the thermal-tuning mechanism to the external environment via the substrate is increased by removing a portion of the substrate to create a gap that is proximate to the thermal-tuning mechanism and the wavelength-sensitive optical component. Furthermore, the optical device includes a binder material mechanically coupled to the substrate and proximate to the gap, thereby maintaining a mechanical strength of the optical device.

    Abstract translation: 描述了在衬底(例如硅)上实现的光学器件。 该光学器件包括对周围的外部环境具有高热阻的波长敏感的光学部件和对局部的热调谐机构(例如加热器)的低热阻,其改变了波长敏感光学部件的温度 从而指定波长敏感光学部件的工作波长。 特别地,通过去除衬底的一部分以产生靠近热调谐机构的间隙和波长的距离,与通过衬底从热调谐机构到外部环境的散热路径相关联的热阻增加 敏感光学部件。 此外,光学装置包括机械耦合到基板并且靠近间隙的粘合剂材料,从而保持光学装置的机械强度。

    Electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices
    14.
    发明授权
    Electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices 有权
    波导结构顶部的电触点用于硅光子器件中的有效光调制

    公开(公告)号:US08014636B2

    公开(公告)日:2011-09-06

    申请号:US12389608

    申请日:2009-02-20

    Abstract: A phase modulation waveguide structure includes one of a semiconductor and a semiconductor-on-insulator substrate, a doped semiconductor layer formed over the one of a semiconductor and a semiconductor-on-insulator substrate, the doped semiconductor portion including a waveguide rib protruding from a surface thereof not in contact with the one of a semiconductor and a semiconductor-on-insulator substrate, and an electrical contact on top of the waveguide rib. The electrical contact is formed of a material with an optical refractive index close to that of a surrounding oxide layer that surrounds the waveguide rib and the electrical contact and lower than the optical refractive index of the doped semiconductor layer. During propagation of an optical mode within the waveguide structure, the electrical contact isolates the optical mode between the doped semiconductor layer and a metal electrode contact on top of the electrical contact.

    Abstract translation: 相位调制波导结构包括半导体和绝缘体上半导体衬底之一,在半导体和绝缘体上半导体衬底之上形成的掺杂半导体层,掺杂半导体部分包括从 其表面不与半导体和绝缘体上半导体衬底之一接触,并且在波导肋的顶部上的电接触。 电接触由光学折射率接近包围波导肋和电接触并且低于掺杂半导体层的光折射率的周围氧化物层的材料形成。 在波导结构内的光学模式的传播期间,电接触将掺杂半导体层和电接触顶部上的金属电极接触之间的光学模式隔离开。

    Ultra-compact photodetector on an optical waveguide
    16.
    发明授权
    Ultra-compact photodetector on an optical waveguide 有权
    在光波导上的超小型光电探测器

    公开(公告)号:US09164231B2

    公开(公告)日:2015-10-20

    申请号:US13205484

    申请日:2011-08-08

    CPC classification number: G02B6/12004 G02B6/1228 G02B6/4214

    Abstract: An integrated circuit is described. This integrated circuit includes an optical waveguide defined in a semiconductor layer, and an optical detector disposed on top of the optical waveguide. Moreover, the optical waveguide has an end with a reflecting facet. For example, the reflective facet may be defined using an anisotropic etch of the semiconductor layer. This reflecting facet reflects light propagating in a plane of the optical waveguide out of the plane into the optical detector, thereby providing a photodetector with high optical responsivity, including an extremely low dark current (and, thus, high photosensitivity) and an extremely small capacitance (and, thus, high electrical bandwidth).

    Abstract translation: 描述了集成电路。 该集成电路包括限定在半导体层中的光波导和设置在光波导顶部的光学检测器。 此外,光波导具有具有反射面的端部。 例如,反射小面可以使用半导体层的各向异性蚀刻来定义。 该反射面反射在平面内的光波导的平面内传播的光进入光检测器,从而提供具有高光学响应性的光电检测器,其包括极低的暗电流(并且因此具有高的光敏性)和极小的电容 (并因此具有高的电气带宽)。

    Optical device with high thermal tuning efficiency
    17.
    发明授权
    Optical device with high thermal tuning efficiency 有权
    具有高调谐效率的光器件

    公开(公告)号:US08971674B2

    公开(公告)日:2015-03-03

    申请号:US12730774

    申请日:2010-03-24

    CPC classification number: G02B6/12007 G02F1/0147 G02F1/025 G02F1/3132

    Abstract: An optical device with high thermal tuning efficiency is described. This optical device may be implemented using a tri-layer structure (silicon-on-insulator technology), including: a substrate, a buried-oxide layer and a semiconductor layer. In particular, a thermally tunable optical waveguide may be defined in the semiconductor layer. Furthermore, a portion of the substrate under the buried-oxide layer and substantially beneath a location of the thermally tunable optical waveguide is fabricated so that a portion of the buried-oxide layer is exposed. In this way, the thermal impedance between the thermally tunable optical waveguide and an external environment is increased, and power consumption associated with thermal tuning of the optical waveguide is reduced.

    Abstract translation: 描述了具有高热调谐效率的光学装置。 该光学器件可以使用三层结构(绝缘体上硅技术)来实现,包括:衬底,掩埋氧化物层和半导体层。 特别地,热可调谐光波导可以限定在半导体层中。 此外,制造掩埋氧化物层下面的基板的一部分并且基本上位于热可调谐光波导的位置下方,使得一部分掩埋氧化物层露出。 以这种方式,热可调谐光波导和外部环境之间的热阻抗增加,并且降低与光波导的热调谐相关的功耗。

    OPTICAL DEVICE WITH HIGH THERMAL TUNING EFFICIENCY
    18.
    发明申请
    OPTICAL DEVICE WITH HIGH THERMAL TUNING EFFICIENCY 有权
    具有高热调谐效率的光学器件

    公开(公告)号:US20110235962A1

    公开(公告)日:2011-09-29

    申请号:US12730774

    申请日:2010-03-24

    CPC classification number: G02B6/12007 G02F1/0147 G02F1/025 G02F1/3132

    Abstract: An optical device with high thermal tuning efficiency is described. This optical device may be implemented using a tri-layer structure (silicon-on-insulator technology), including: a substrate, a buried-oxide layer and a semiconductor layer. In particular, a thermally tunable optical waveguide may be defined in the semiconductor layer. Furthermore, a portion of the substrate under the buried-oxide layer and substantially beneath a location of the thermally tunable optical waveguide is fabricated so that a portion of the buried-oxide layer is exposed. In this way, the thermal impedance between the thermally tunable optical waveguide and an external environment is increased, and power consumption associated with thermal tuning of the optical waveguide is reduced.

    Abstract translation: 描述了具有高热调谐效率的光学装置。 该光学器件可以使用三层结构(绝缘体上硅技术)来实现,包括:衬底,掩埋氧化物层和半导体层。 特别地,热可调谐光波导可以限定在半导体层中。 此外,制造掩埋氧化物层下面的基板的一部分并且基本上位于热可调谐光波导的位置下方,使得一部分掩埋氧化物层露出。 以这种方式,热可调谐光波导和外部环境之间的热阻抗增加,并且降低与光波导的热调谐相关的功耗。

    DUAL-LAYER THERMALLY TUNED OPTICAL DEVICE
    19.
    发明申请
    DUAL-LAYER THERMALLY TUNED OPTICAL DEVICE 有权
    双层热调谐光学器件

    公开(公告)号:US20100247022A1

    公开(公告)日:2010-09-30

    申请号:US12415886

    申请日:2009-03-31

    CPC classification number: G02B6/12007 G02F1/0147 G02F1/025 G02F2203/15

    Abstract: Embodiments of an optical device, an array of optical devices, and a technique for fabricating the optical device or the array are described. This optical device is implemented using two semiconductor layers (such as silicon), one of which includes a heater and the other includes a thermally tunable optical waveguide. Spatially separating these two functions in the optical device results in more efficient heat transfer between the heater and the optical waveguide, reduced heat transfer to the surroundings, and reduced optical losses in the optical waveguide relative to existing silicon-based optical devices.

    Abstract translation: 描述了光学器件,光学器件阵列以及用于制造光学器件或阵列的技术的实施例。 该光学器件使用两个半导体层(诸如硅)来实现,其中一个包括加热器,另一个包括热可调谐光波导。 在光学器件中空间分离这两个功能导致加热器和光波导之间的更有效的热传递,减少的热传递到周围环境,并且相对于现有的硅基光学器件减少了光波​​导中的光学损耗。

    ELECTRICAL CONTACTS ON TOP OF WAVEGUIDE STRUCTURES FOR EFFICIENT OPTICAL MODULATION IN SILICON PHOTONIC DEVICES
    20.
    发明申请
    ELECTRICAL CONTACTS ON TOP OF WAVEGUIDE STRUCTURES FOR EFFICIENT OPTICAL MODULATION IN SILICON PHOTONIC DEVICES 有权
    用于在硅光电器件中进行有效光学调制的波形结构顶部的电气接触

    公开(公告)号:US20100215309A1

    公开(公告)日:2010-08-26

    申请号:US12389608

    申请日:2009-02-20

    Abstract: A phase modulation waveguide structure includes one of a semiconductor and a semiconductor-on-insulator substrate, a doped semiconductor layer formed over the one of a semiconductor and a semiconductor-on-insulator substrate, the doped semiconductor portion including a waveguide rib protruding from a surface thereof not in contact with the one of a semiconductor and a semiconductor-on-insulator substrate, and an electrical contact on top of the waveguide rib. The electrical contact is formed of a material with an optical refractive index close to that of a surrounding oxide layer that surrounds the waveguide rib and the electrical contact and lower than the optical refractive index of the doped semiconductor layer. During propagation of an optical mode within the waveguide structure, the electrical contact isolates the optical mode between the doped semiconductor layer and a metal electrode contact on top of the electrical contact.

    Abstract translation: 相位调制波导结构包括半导体和绝缘体上半导体衬底之一,在半导体和绝缘体上半导体衬底之上形成的掺杂半导体层,掺杂半导体部分包括从 其表面不与半导体和绝缘体上半导体衬底之一接触,并且在波导肋的顶部上的电接触。 电接触由光学折射率接近包围波导肋和电接触并且低于掺杂半导体层的光折射率的周围氧化物层的材料形成。 在波导结构内的光学模式的传播期间,电接触将掺杂半导体层和电接触顶部上的金属电极接触之间的光学模式隔离开。

Patent Agency Ranking