Abstract:
In an MCM, an optical signal is conveyed by an optical waveguide disposed on a surface of a first substrate to an optical coupler having a vertical facet. This optical coupler has an optical mode that is different than the optical mode of the optical waveguide. For example, the spatial extent of the optical mode associated with the optical coupler may be larger, thereby reducing optical losses and sensitivity to alignment errors. Then, the optical signal is directly coupled from the vertical facet to a facing vertical facet of an identical optical coupler on another substrate, and the optical signal is conveyed in another optical waveguide disposed on the other substrate.
Abstract:
An MCM includes a two-dimensional array of facing chips, including island chips and bridge chips that communicate with each other using overlapping connectors. In order to maintain the relative vertical spacing of these connectors, compressible structures are in cavities in a substrate, which house the bridge chips, provide a compressive force on back surfaces of the bridge chips. These compressible structures include a compliant material with shape and volume compression. In this way, the MCM may ensure that facing surfaces of the island chips and the bridge chips, as well as connectors on these surfaces, are approximately coplanar without bending the bridge chips.
Abstract:
An optical device implemented on a substrate (such as silicon) is described. This optical device includes a wavelength-sensitive optical component with a high thermal resistance to a surrounding external environment and a low thermal resistance to a localized thermal-tuning mechanism (such as a heater), which modifies a temperature of the wavelength-sensitive optical component, thereby specifying an operating wavelength of the wavelength-sensitive optical component. In particular, the thermal resistance associated with a thermal dissipation path from the thermal-tuning mechanism to the external environment via the substrate is increased by removing a portion of the substrate to create a gap that is proximate to the thermal-tuning mechanism and the wavelength-sensitive optical component. Furthermore, the optical device includes a binder material mechanically coupled to the substrate and proximate to the gap, thereby maintaining a mechanical strength of the optical device.
Abstract:
In a chip package, semiconductor dies in a vertical stack of semiconductor dies or chips (which is referred to as a ‘plank stack’) are aligned by positive features that are mechanically coupled to negative features recessed below the surfaces of adjacent semiconductor dies. Moreover, the chip package includes an interposer plate at approximately a right angle to the plank stack, which is electrically coupled to the semiconductor dies along an edge of the plank stack. In particular, electrical pads proximate to a surface of the interposer plate (which are along a stacking direction of the plank stack) are electrically coupled to pads that are proximate to edges of the semiconductor dies by an intervening conductive material, such as solder balls or spring connectors. Note that the chip package may facilitate high-bandwidth communication of signals between the semiconductor dies and the interposer plate.
Abstract:
An optical device implemented on a substrate (such as silicon) is described. This optical device includes a wavelength-sensitive optical component with a high thermal resistance to a surrounding external environment and a low thermal resistance to a localized thermal-tuning mechanism (such as a heater), which modifies a temperature of the wavelength-sensitive optical component, thereby specifying an operating wavelength of the wavelength-sensitive optical component. In particular, the thermal resistance associated with a thermal dissipation path from the thermal-tuning mechanism to the external environment via the substrate is increased by removing a portion of the substrate to create a gap that is proximate to the thermal-tuning mechanism and the wavelength-sensitive optical component. Furthermore, the optical device includes a binder material mechanically coupled to the substrate and proximate to the gap, thereby maintaining a mechanical strength of the optical device.
Abstract:
In a chip package, semiconductor dies in a vertical stack of semiconductor dies or chips (which is referred to as a ‘plank stack’) are aligned by positive features that are mechanically coupled to negative features recessed below the surfaces of adjacent semiconductor dies. Moreover, the chip package includes an interposer plate at approximately a right angle to the plank stack, which is electrically coupled to the semiconductor dies along an edge of the plank stack. In particular, electrical pads proximate to a surface of the interposer plate (which are along a stacking direction of the plank stack) are electrically coupled to pads that are proximate to edges of the semiconductor dies by an intervening conductive material, such as solder balls or spring connectors. Note that the chip package may facilitate high-bandwidth communication of signals between the semiconductor dies and the interposer plate.
Abstract:
In an MCM, an optical signal is conveyed by an optical waveguide disposed on a surface of a first substrate to an optical coupler having a vertical facet. This optical coupler has an optical mode that is different than the optical mode of the optical waveguide. For example, the spatial extent of the optical mode associated with the optical coupler may be larger, thereby reducing optical losses and sensitivity to alignment errors. Then, the optical signal is directly coupled from the vertical facet to a facing vertical facet of an identical optical coupler on another substrate, and the optical signal is conveyed in another optical waveguide disposed on the other substrate.
Abstract:
An MCM includes a two-dimensional array of facing chips, including island chips and bridge chips that communicate with each other using overlapping connectors. In order to maintain the relative vertical spacing of these connectors, compressible structures are in cavities in a substrate, which house the bridge chips, provide a compressive force on back surfaces of the bridge chips. These compressible structures include a compliant material with shape and volume compression. In this way, the MCM may ensure that facing surfaces of the island chips and the bridge chips, as well as connectors on these surfaces, are approximately coplanar without bending the bridge chips.
Abstract:
A multi-chip module (MCM) that includes at least two substrates, having facing surfaces, which are mechanically coupled by a set of coupling elements having a reflow characteristic, is described. One of the two substrates includes another set of coupling elements having another reflow characteristic, which is different than the reflow characteristic. These different reflow characteristics of the sets of coupling elements allow different temperature profiles to be used when bonding the two substrates to each other than when bonding the one of the two substrates to a carrier. For example, the temperature profiles may have different peak temperatures and/or different durations from one another. These reflow characteristics may facilitate low-cost, high-yield assembly and alignment of the substrates in the MCM, and may allow temperature-sensitive components to be included in the MCM.
Abstract:
A chip package is described which includes a first chip having a first surface and first sides having a first side-wall angle, and a second chip having a second surface and second sides having a second side-wall angle, which faces and is mechanically coupled to the first chip. The chip package is fabricated using a batch process, and the chips in the chip package were singulated from their respective wafers after the chip package is assembled. This is accomplished by etching the first and second side-wall angles and thinning the wafer thicknesses prior to assembling the chip package. For example, the first and/or the second side walls can be fabricated using wet etching or dry etching. Therefore, the first and/or the second side-wall angles may be other than vertical or approximately vertical.