Abstract:
An apparatus and method for catalyzing a reaction on a substrate (24) comprising, a light source (12), a micromirror (16) positioned to redirect light (14) from the light source (12) toward a substrate (24) wherein the redirected light (14) catalyzes a chemical reaction proximate a substrate (24), is disclosed. A computer (18) is connected to; and controls, the positioning of mirrors within the micromirror (16) to specifically redirect light to specific portions of a substrate. The substrate (24) can be placed in a reaction chamber (50), wherein the light (14) that is redirected by the micromirror (16) catalyzes a chemical reaction proximate a substrate (24).
Abstract:
The present invention includes a method of identifying an increase in microsatellite DNA from a genomic nucleic acid sample comprising: obtaining a microsatellite profile from a sample suspected of comprising cancer cells; comparing the microsatellite profile to a reference microsatellite profile from a reference genome; and determining in increase in the number of microsatellite DNAs from the sample as compared to the reference genome, wherein an increase in microsatellite DNA indicates a pre-disposition to cancer and the microsatellites are upstream from the estrogen receptor-related gamma gene (ESRRG).
Abstract:
An apparatus and method for catalyzing a reaction on a substrate (24) comprising, a light source (12), a micromirror (16) positioned to redirect light (14) from the light source (12) toward a substrate (24) wherein the redirected light (14) catalyzes a chemical reaction proximate a substrate (24), is disclosed. A computer (18) is connected to, and controls, the positioning of mirrors within the micromirror (16) to specifically redirect light to specific portions of a substrate. The substrate (24) can be placed in a reaction chamber (50), wherein the light (14) that is redirected by the micromirror (16) catalyzes a chemical reaction proximate a substrate (24).
Abstract:
A temperature-controlled micropipette adaptor includes a metal base sandwiched between two plastic layers. The metal base has an orifice to hold a micropipette. The plastic layers hold lenses in alignment for spectrophometric measurements of a sample contained in a micropipette inserted into the orifice. A resistive heater wire is held between the metal base and the plastic layer to transfer heat from the heater wire to the metal base and thus to the micropipette sample. A thermocouple is attached to the metal layer to monitor temperature changes. A feedback control system is coupled to the device for monitoring and programmably controlling changes in temperature of the heated sample over time.
Abstract:
An adaptor for holding a micropipette in a spectrophotometer includes a base member for holding the micropipette and an optical system for linearly focusing visible or ultraviolet light onto the micropipette. Specifically, the optical system includes a cylindrical lens which focuses collimated light from a light source into a line along the axis of the micropipette. The optical system also includes a cylindrical quartz lens which recollimates the light that has passed through the micropipette sample holder. A detector is provided to receive the recollimated light for measuring the absorptivity of the sample material held in the micropipette.
Abstract:
An apparatus and method for catalyzing a reaction on a substrate (24) comprising, a light source (12), a micromirror (16) positioned to redirect light (14) from the light source (12) toward a substrate (24) wherein the redirected light (14) catalyzes a chemical reaction proximate a substrate (24), is disclosed. A computer (18) is connected to, and controls, the positioning of mirrors within the micromirror (16) to specifically redirect light to specific portions of a substrate. The substrate (24) can be placed in a reaction chamber (50), wherein the light (14) that is redirected by the micromirror (16) catalyzes a chemical reaction proximate a substrate (24).
Abstract:
A method, computer program product and system for analyzing multispectral images from a plurality of regions of birefringent material, such as a polymer film, using polarized light and a corresponding polar analyzer to identify differential strain in the birefringent material. For example, the birefringement material may be low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene, polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinylidene chloride, polyester, nylon, or cellophane film. Optionally, the method includes generating a real-time quantitative strain map.
Abstract:
The present invention includes compositions and methods treat a patient suffering from one or more symptoms of cardiac hypertrophy, hypertension and/or ischemia by administering a pharmaceutically effective amount of a pharmaceutical composition having an anti-epileptic drug and an antibiotic to the patient, for example, the anti-epileptic drug may be carbamazepine and the antibiotic may be doxycycline.
Abstract:
An advanced imaging spectrograph system provides for slab-gel DNA sequencing and genotyping with high throughput sequencing. The system is based on the integration of improved electrophoresis structures with an imaging spectrophotometer that records the entire emission spectra along an imaging line across a sequencing gel (or capillary array). The system includes spectral shape matching to improve dye identification allowing the use of dyes having nearly any emission spectra and allowing greater than four dye multiplexing.
Abstract:
A temperature-controlled micropipette adaptor includes a metal base sandwiched between two plastic layers. The metal base has an orifice to hold a micropipette. The plastic layers hold lenses in alignment for spectrophotometric measurements of a sample contained in a micropipette inserted into the orifice. A resistive heater wire or thermoelectric heater/cooler is held between the metal base and the plastic layer to transfer heat from the heater wire or thermoelectric device to the metal base and thus to the micropipette sample. A thermocouple is attached to the metal layer to monitor temperature changes. A feedback control system is coupled to the device for monitoring and programmably controlling changes in temperature of the heated sample over time. As desired, a microprocessor can be electrically connected between the heater wire or thermoelectric device and the output signal of the spectrophotometer to selectively energize the heater wire thermoelectric device in response to the output signal of the spectrophotometer.