摘要:
A cell bias control circuit maximizes the performance of devices in the read/write path of memory cells (magnetic tunnel junction device+transistor) without exceeding leakage current or reliability limits by automatically adjusting multiple control inputs of the read/write path at the memory array according to predefined profiles over supply voltage, temperature, and process corner variations by applying any specific reference parameter profiles to the memory array.
摘要:
A boosted supply voltage generator is selectively activated and deactivated to allow operations that are sensitive to variations on the boosted voltage to be performed with a stable boosted voltage. Techniques for deactivating and reactivating the voltage generator are also disclosed that enable more rapid recovery from deactivation such that subsequent operations can be commenced sooner. Such techniques include storing state information corresponding to the voltage generator when deactivated, where the stored state information is used when reactivating the voltage generator. Stored state information can include a state of a clock signal provided to the voltage generator.
摘要:
A memory device is configured to identify a set of bit cells to be changed from a first state to a second state. In some examples, the memory device may apply a first voltage to the set of bit cells to change a least a first portion of the set of bit cells to the second state. In some cases, the memory device may also identify a second portion of the bit cells that remained in the first state following the application of the first voltage. In these cases, the memory device may apply a second voltage having a greater magnitude, duration, or both to the second portion of the set of bit cells in order to set the second portion of bit cells to the second state.
摘要:
A boosted supply voltage generator is selectively activated and deactivated to allow operations that are sensitive to variations on the boosted voltage to be performed with a stable boosted voltage. Techniques for deactivating and reactivating the voltage generator are also disclosed that enable more rapid recovery from deactivation such that subsequent operations can be commenced sooner. Such techniques include storing state information corresponding to the voltage generator when deactivated, where the stored state information is used when reactivating the voltage generator. Stored state information can include a state of a clock signal provided to the voltage generator.
摘要:
A word line supply voltage generator is selectively activated and deactivated to allow internal memory operations that are sensitive to variations on word line voltages to be performed with a stable word line voltage. Techniques for deactivating and reactivating the voltage generator are also disclosed that enable more rapid recovery from deactivation such that subsequent operations can be commenced sooner.
摘要:
A cell bias control circuit maximizes the performance of devices in the read/write path of memory cells (magnetic tunnel junction device+transistor) without exceeding leakage current or reliability limits by automatically adjusting multiple control inputs of the read/write path at the memory array according to predefined profiles over supply voltage, temperature, and process corner variations by applying any specific reference parameter profiles to the memory array.
摘要:
A cell bias control circuit maximizes the performance of devices in the read/write path of memory cells (magnetic tunnel junction device+transistor) without exceeding leakage current or reliability limits by automatically adjusting multiple control inputs of the read/write path at the memory array according to predefined profiles over supply voltage, temperature, and process corner variations by applying any specific reference parameter profiles to the memory array.
摘要:
A boosted supply voltage generator is selectively activated and deactivated to allow operations that are sensitive to variations on the boosted voltage to be performed with a stable boosted voltage. Techniques for deactivating and reactivating the voltage generator are also disclosed that enable more rapid recovery from deactivation such that subsequent operations can be commenced sooner. Such techniques include storing state information corresponding to the voltage generator when deactivated, where the stored state information is used when reactivating the voltage generator. Stored state information can include a state of a clock signal provided to the voltage generator.
摘要:
In some examples, a memory device includes multiple memory banks equipped with an isolation switch and dedicated power supply pins. The isolation switch of each memory bank is configured to isolate the memory bank from global signals. The dedicated power supply pins are configured to connect each of the memory banks to a dedicated local power supply pads on the package substrate to provide local dedicated power supplies to each of the memory banks and to reduce voltage transfer between memory banks over conductors on the device, the device substrate, or the package substrate of the memory device.
摘要:
In some examples, a memory device includes multiple memory banks equipped with an isolation switch and dedicated power supply pins. The isolation switch of each memory bank is configured to isolate the memory bank from global signals. The dedicated power supply pins are configured to connect each of the memory banks to a dedicated local power supply pads on the package substrate to provide local dedicated power supplies to each of the memory banks and to reduce voltage transfer between memory banks over conductors on the device, the device substrate, or the package substrate of the memory device.