Abstract:
Provided are an optical apparatus, a manufacturing method of a distributed Bragg reflector laser diode, and a manufacturing method of the optical apparatus, the an optical apparatus including a cooling device, a distributed Bragg reflector laser diode having a lower clad including a recess region on one side of the cooling device and connected to another side of the cooling device, and an air gap between the cooling device and the distributed Bragg reflector laser diode, wherein the air gap is defined by a bottom surface of the lower clad in the recess region and a top surface of the cooling device.
Abstract:
Provided are an optical apparatus, a manufacturing method of a distributed Bragg reflector laser diode, and a manufacturing method of the optical apparatus, the an optical apparatus including a cooling device, a distributed Bragg reflector laser diode having a lower clad including a recess region on one side of the cooling device and connected to another side of the cooling device, and an air gap between the cooling device and the distributed Bragg reflector laser diode, wherein the air gap is defined by a bottom surface of the lower clad in the recess region and a top surface of the cooling device
Abstract:
A superluminescent diode and a method for implementing the same, wherein the method includes growing a first epi layer on top of an SI (semi-insulating substrate); re-growing a butt based on the first epi layer; forming a tapered SSC (spot size converter) on the re-grown butt layer; forming an optical waveguide on an active area that is based on the first epi layer and on an SSC area that is based on the tapered SSC; forming an RWG on the optical waveguide; and forming a p-type electrode and an n-type electrode.
Abstract:
Provided is a laser diode and a method for manufacturing the same. The diode includes a substrate including a DBR region having a channel hole, an active region, and a phase shift region, an optical waveguide provided on the substrate and extending from the active region to the DBR region, a lower insulation layer disposed on the optical waveguide, upper electrodes disposed on the lower insulation layer, and a heat blocking layer disposed in the channel hole of the DBR region and thermally separating the optical waveguide from the substrate.
Abstract:
Provided is a laser device according to embodiments of the inventive concept comprising a substrate including a gain region, a phase control region, and a tuning region arranged along a first direction, the substrate having an air gap which extends from the phase control region to the tuning region, an upper clad layer on the substrate, a waveguide structure extending in the first direction between the upper clad layer and the substrate, a first upper electrode disposed on the upper surface of the upper clad layer of the tuning region, and a lower electrode disposed on a lower surface of the substrate and extending from the gain region to the tuning region, wherein the air gap may have a larger width than the waveguide in a second direction crossing the first direction.
Abstract:
Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
Abstract:
A superluminescent diode and a method for implementing the same, wherein the method includes growing a first epi layer on top of an SI (semi-insulating substrate); re-growing a butt based on the first epi layer; forming a tapered SSC (spot size converter) on the re-grown butt layer; forming an optical waveguide on an active area that is based on the first epi layer and on an SSC area that is based on the tapered SSC; forming an RWG on the optical waveguide; and forming a p-type electrode and an n-type electrode.
Abstract:
Provided herein is a distributed bragg reflector ridge laser diode that is capable of easily embodying a diffraction grating and that minimizes an optical absorption effect on a DBR area, and a fabricating method thereof, the distributed bragg reflector ridge laser diode including a lower clad layer formed on top of a substrate; an active core zone formed on top of the lower clad layer; a plurality of ridge wave guides formed on top of the active core zone such that they are spaced from one another and extend in an axial direction; and a diffraction grating formed on top of the active core zone and between the plurality of ridge wave guides.