Abstract:
This disclosure relates to a camera device and a method for capturing images by using the same. The camera device includes a liquid crystal lens array composed of a plurality of liquid crystal sub-lenses, an image sensor and a drive module. A preset distance is provided between the liquid crystal lens array and the image sensor, and the drive module is electrically connected with the liquid crystal lens array. The drive module is configured to adjust a focus of each liquid crystal sub-lens during capturing based on a distance between an object to be captured and a corresponding liquid crystal sub-lens, such that light rays from each object are focused respectively in a plane where the image sensor is located after passing through the corresponding liquid crystal sub-lens.
Abstract:
Embodiments of this invention relate to a color filter substrate, an array substrate, and a display apparatus. this color filter substrate comprises a substrate; and a color filter layer located on the substrate, wherein the color filter layer comprises a transmissive grating, the transmissive grating comprises a medium array located on the substrate; and a metal layer located on the top surface and the side wall of the medium array, and may comprise a first grating which transmits red light, a second grating which transmits green light, and a third grating which transmits blue light. This array substrate comprises: a substrate; a thin film transistor located on the substrate; and a color filter layer, which is located on the substrate and is provided near the thin film transistor in a direction in parallel with the surface of the substrate, wherein the color filter layer comprises a transmissive grating, and the transmissive grating comprises: a medium array located on the substrate; and a metal layer located on the top surface and the side wall of the medium array. This display apparatus comprises this color filter substrate or this array substrate.
Abstract:
A display panel and manufacturing method thereof, and a display device and health monitoring method thereof. The display panel includes a base substrate and a sonic sensor disposed on the base substrate. The sonic sensor is configured to monitor a sonic wave.
Abstract:
Embodiments of the present disclosure relate to the field of display technologies, and particularly, to an array substrate and methods of manufacturing and driving the same. With the embodiments of the present disclosure, undesirable phenomenon, e.g. color mixing and so on is avoid in a display device having the array substrate while simplifying the manufacture process of the array substrate. The array substrate comprises a substrate, thin-film transistors, pixel electrodes and a common electrode on the substrate, a plurality of leading wires and a color filter layer; wherein the common electrode comprises a plurality of common electrode blocks reusable as self-capacitance electrodes, and each of the leading wires has one end electrically connected to one of the common electrode blocks and the other end electrically connected to a touch integrated circuit. The array substrate according to the embodiments of the present disclosure is used in the display device.
Abstract:
The present invention relates to the technical field of display by a touch screen, and particularly relates to a conductive bridging method, a bridging structure, a touch panel and a touch control display apparatus. The conductive bridging method comprises: sequentially forming an insulating layer and a self-assembled-monolayer on the base substrate provided with first electrode lines and second electrode lines which mutually intersect; forming via holes penetrating through the insulating layer and the self-assembled-monolayer; removing the self-assembled-monolayer between two adjacent via holes close to a same first electrode line; and forming a conductive film in the via holes and in a region between two adjacent via holes. In this way, a bridging connection is achieved with the help of the electrical conductivity of the conductive film.
Abstract:
The present disclosure pertains to the technical field of display, which relates to a manufacturing method of a thin film transistor and a thin film transistor, and an array substrate. The manufacturing method of a thin film transistor comprises: forming, above a substrate, patterns comprising different surface energies; coating, above said substrate, a composite solution containing organic semiconductor material and polymer insulating material, and forming a composite film layer; patterning said composite film layer according to the patterns with different surface energies above said substrate, preserving said composite film layer corresponding to the pattern areas with relatively high surface energies; layering said patterned composite film layer by means of an organic solvent steam treatment method; forming two separate metal electrodes at two opposite sides of said patterned composite film layer.
Abstract:
Embodiments of the present disclosure relate to the field of display technologies, and particularly, to an array substrate and methods of manufacturing and driving the same. With the embodiments of the present disclosure, undesirable phenomenon, e.g. color mixing and so on is avoid in a display device having the array substrate while simplifying the manufacture process of the array substrate. The array substrate comprises a substrate, thin-film transistors, pixel electrodes and a common electrode on the substrate, a plurality of leading wires and a color filter layer; wherein the common electrode comprises a plurality of common electrode blocks reusable as self-capacitance electrodes, and each of the leading wires has one end electrically connected to one of the common electrode blocks and the other end electrically connected to a touch integrated circuit. The array substrate according to the embodiments of the present disclosure is used in the display device.
Abstract:
Provided is a thin film transistor including a highly-textured dielectric layer, an active layer, a gate electrode and a source/drain electrode that are stacked on a base substrate. The source/drain electrode includes a source electrode and a drain electrode. The gate electrode and the active layer are insulated from each other. The source electrode and the drain electrode are electrically connected to the active layer. Constituent particles of the active layer are of monocrystalline silicon-like structures. According to the present disclosure, the highly-textured dielectric layer is adopted to replace an original buffer layer to induce the active layer to grow into a monocrystalline silicon-like structure, such that the performance of the thin film transistor is improved.
Abstract:
A peeping prevention structure, a display device and a display method are provided. The peeping prevention structure includes: a first electrode and a second electrode opposite to each other; a plurality of transparent columnar cavities between the first electrode and the second electrode, wherein a plurality of opening regions are defined between the plurality of transparent columnar cavities, and each of the plurality of transparent columnar cavities is filled with charged light-absorbing particles; wherein, the charged light-absorbing particles are configured to, under a control of an electric field between the first electrode and the second electrode, be uniformly diffused in the transparent columnar cavity or be concentrated at an end of the transparent columnar cavity.
Abstract:
A display module and an electronic device are provided, the display module including: an upper substrate including a first electrode provided on the substrate, and a plurality of projections provided on a first surface of the upper substrate and arranged in a matrix; a lower substrate including a second electrode provided on the lower substrate, and a plurality of grooves provided on a first surface of the lower substrate; and an inverted emulsion. The first surface of the upper substrate is on the first surface of the lower substrate, each projection matches a groove corresponding thereto to form an accommodating space, and the inverted emulsion is filled in the accommodating space.