Abstract:
Wireless communication between two electronic devices may be used to determine a distance between the two devices, even in the presence of an otherwise-disruptive attacker. A wireless receiver system of one device may receive a true wireless ranging signal from a first transmitting device and a false wireless ranging signal from an attacker. The wireless receiver system may correlate the wireless signals with a known preamble sequence and perform channel estimation using the result, obtaining a channel impulse response for the wireless signals. The wireless receiver system may filter the channel impulse response for the plurality of wireless signals by removing at least part of the channel impulse response due to the false wireless ranging signal while not removing at least part of the channel impulse response due to the true wireless ranging signal. The receiver system may perform a wireless ranging operation using the filtered channel impulse response.
Abstract:
Systems, methods, and devices are provided to efficiently share an antenna between multiple communication systems and allow for the communication systems to be simultaneously connected to the antenna with less attenuation and/or no fluctuation in signal strength. Communication circuitry may include an antenna that transmits and receives electromagnetic radiation. The communication circuitry may also include an antenna port that provides primary access to the antenna with a first attenuation via an antenna port input. Additionally, the communication circuitry may include a coupler attached to the antenna port. The coupler may provide secondary access to the antenna with a second attenuation.
Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
Methods for operating a portable electronic device to conduct mobile payment transactions are provided. The electronic device may include near field communications circuitry having a transmitter, a receiver, and a field detector for detecting a field from a merchant terminal. The receiver is typically idle. The receiver may be activated when the field detector detects that the electronic device is within the field of the merchant terminal. The transmitter may then be used to perform link establishment and data transfer. If the payment transaction fails for any reason, one or more hardware settings on the electronic device may be adjusted to help increase the chance of a successful transaction in a subsequent payment attempt. Another transaction may be attempted when the user moves the device out of the field and back into the field or may be performed automatically as long as the device is still within the field.
Abstract:
An electronic device may include wireless circuitry that is configured to transmit wireless signals during operation. A maximum transmit power level may be established that serves as a cap on how much power is transmitted from the electronic device. Adjustments may be made to the maximum transmit power level in real time based on sensor signals and other information on the operating state of the electronic device. The sensor signals may include motion signals from an accelerometer. The sensor signals may also include ultrasonic sound detected by a microphone. Device orientation data may be used by the device to select whether to measure the ultrasonic sound using a front facing or rear facing microphone. Maximum transmit power level may also be adjusted based on whether or not sound is playing through an ear speaker in the device.
Abstract:
Systems and method for improving design and/or operation of a radio frequency system are provided. One embodiment provides a radio frequency system, which includes a first look-up table that describes a static reference value, association between a maximum output power and a first specification level, and association between a first back off value and a second specification level, in which the first back off value is defined in relation to the static reference value and used to determine a first reduced output power; and a second look-up table that describes association between the maximum output power and a first set of operational parameters and association between the first reduced output power and a second set of operational parameters. The radio frequency system wirelessly transmits the analog electrical signal in compliance with an instructed specification level instruction by determining a desired output power based on the instructed specification level using the first look-up table and implementing operational parameters determined based on the desired output power using the second look-up table.
Abstract:
A device and method selects an antenna configuration. The method performed at a user equipment includes determining at least one communication functionality that is being used, each communication functionality configured to utilize at least one antenna in a multi-antenna arrangement of the user equipment. The method includes receiving a first indication of whether a cellular communication functionality is being used, the cellular communication functionality configured to utilize at least one antenna in the multi-antenna arrangement. The method includes receiving a second indication of whether a coexistence condition is present. The method includes determining an antenna configuration for the multi-antenna arrangement to be used by the determined communication functionality based upon the determined communication functionality, the first indication, and the second indication. The method includes configuring the multi-antenna arrangement for the determined communication functionality based upon the antenna configuration.
Abstract:
The present techniques relate to reducing interference on conducted RF links by utilizing country information to determine where an electronic device is located, and using such information to select sub-bands or channels that are not available for wireless transmission to be used for transmission of signals via the conducted RF links. Because the conducted RF links operate on frequency bands that are different from the frequency bands used for wireless communications in a given country, there is less likelihood that wireless communications will create interference in the signals being transmitted via the conducted RF links.
Abstract:
Dynamic antenna switching based on weighted signal to noise ratio (SNR). A wireless device may include multiple antennas. SNR at each active antenna may be calculated. An antenna-specific weight may be applied to each antenna's SNR. The antenna-specific weights may further be radio specific and/or transmit or receive specific in some cases. Antenna selection (possibly just for a specific radio and/or for transmit or receive operations, depending on the specificity of the antenna weights), including potentially switching which antenna is used, may be based on the resulting weighted SNR values for each antenna. If the antenna-specific weights are radio specific and/or transmit or receive operation specific, the method may be performed multiple times with different antenna-specific weights to select antenna(s) for different radios and/or for other operations.
Abstract:
An electronic device may include wireless circuitry that is configured to transmit wireless signals during operation. A maximum transmit power level may be established that serves as a cap on how much power is transmitted from the electronic device. Adjustments may be made to the maximum transmit power level in real time based on sensor signals and other information on the operating state of the electronic device. The sensor signals may include motion signals from an accelerometer. The sensor signals may also include ultrasonic sound detected by a microphone. Device orientation data may be used by the device to select whether to measure the ultrasonic sound using a front facing or rear facing microphone. Maximum transmit power level may also be adjusted based on whether or not sound is playing through an ear speaker in the device.