Abstract:
Circuits, methods, and apparatus that can allow chipsets in an electronic device to share information such that they can more efficiently utilize resources that are available in the electronic device. One example can provide a bus that is shared by three or more chipsets in an electronic device. This shared bus can be used by the chipsets in the electronic device to communicate and negotiate for the utilization of resources of the electronic device.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
This disclosure relates to network infrastructure identification by a wireless user equipment (UE) device. According to one embodiment, one or more requests for infrastructure identification information may be transmitted. Each request may indicate a current location of the UE. A respective response may be received to each corresponding respective request. Each respective response may include infrastructure identification information for the current location indicated in the corresponding respective request. Features such as vendor, type, model, or version of cellular network infrastructure equipment with which the UE performs cellular communication may be identified based on the response(s), and features specific to the identified equipment may accordingly be implemented during such cellular communication.
Abstract:
A method for controlling transmission power in accordance with a total transmission power limit in a multi-radio wireless communication device including a master radio and a slave radio is provided. The method can include the wireless communication device determining, at the master radio, a transmission power of the master radio. The method can further include the wireless communication device providing information indicative of the transmission power of the master radio from the master radio to the slave radio. The method can additionally include determining, at the slave radio, an allowable transmission power for the slave radio. A sum of the allowable transmission power and the transmission power of the master radio may not exceed the total transmission power limit.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
Circuits, methods, and apparatus that can allow chipsets in an electronic device to share information such that they can more efficiently utilize resources that are available in the electronic device. One example can provide a bus that is shared by three or more chipsets in an electronic device. This shared bus can be used by the chipsets in the electronic device to communicate and negotiate for the utilization of resources of the electronic device.
Abstract:
An approach is described for a wireless device comprising a transceiver and a processor communicatively coupled to the transceiver. The processor is configured to detect a packet for transmission; scan, using the transceiver, a channel during an initial sliding window, the initial sliding window having N symbol durations; determine a power distribution of the initial sliding window based on the channel scan; determine that the channel is occupied during a first time period of the initial sliding window based at least on the power distribution; and determine a second sliding window having a second time period and a third time period. The second time period overlaps with the initial sliding window and a length of the third time period is determined based at least on the power distribution. The processor is further configured to scan, using the transceiver, the channel during the third time period; determine that the channel is idle during the third time period of the second sliding window; and transmit, using the transceiver, the packet to a second wireless device on the channel responsive to the third time period being idle.
Abstract:
An interface circuit in an electronic device (such as an access point) may request a channel status in order to specify a subset of one or more frequency sub-bands. During operation, the interface circuit may provide at least a frame to the recipient electronic device, where the frame requests the channel status for the one or more frequency sub-bands. Then, the electronic device may receive one or more measurement results from the recipient electronic device that specify the subset of the one or more frequency sub-bands (such as one or more RUs) that are not to be used when communicating with the recipient electronic device.
Abstract:
An interface circuit in an electronic device (such as an access point) may request a channel status in order to specify a subset of one or more frequency sub-bands. During operation, the interface circuit may provide at least a frame to the recipient electronic device, where the frame requests the channel status for the one or more frequency sub-bands. Then, the electronic device may receive one or more measurement results from the recipient electronic device that specify the subset of the one or more frequency sub-bands (such as one or more RUs) that are not to be used when communicating with the recipient electronic device.