Abstract:
A system and method for retaining enclosure components of an electronic device that can experience a range of dynamic forces is disclosed. The electronic device includes a cover component and a housing component. The electronic device also contains a retention system that includes a spring clip and a compressible layer for retaining a portion of the cover component to the housing component. The retention system provides a variable retention force that resists the separation of the cover and housing components. If the electronic device experiences a force that is applied abruptly, such as in the case of an unintentional drop event, the variable retention force is high, increasing the retention between the cover and housing components. If the electronic device experiences a slower and gradual force, such as in the case of intentional disassembly, the variable retention force is low, allowing the disassembly of the electronic device.
Abstract:
A fastener is disclosed. The fastener can be used to couple together two or more parts in an electronic device. The fastener may include a head coupled with a platform having a shaft extending from the platform. The head is coupled with the platform in a manner that allows the head to decouple from the platform. For example, the head is secured with the platform by an adhesive that provides an adhesive bonding force. In this regard, a rotational force applied to the head that is greater than the adhesive bonding force causes the head to decouple from the platform. The shaft may include several blades and several protrusions. The blades may be used to engage one of the parts. The protrusions may also engage the same part as the blades, and interlock with the part to provide a retaining force that prevents the fastener from decoupling from the parts.
Abstract:
An electronic device having a securing member for a camera module is disclosed. The securing member may include several flexible spring elements extending around the camera module to maintain the position of the camera module during an assembly process of the electronic device. The securing member and the housing may be made from an electrically conductive material or materials. In this manner, the securing member may further provide the camera module with an electrical ground to prevent excessive electric charge within the camera module. In some embodiments, an alignment member is positioned on the housing and aligns the camera module and/or securing member with an aperture of the housing.
Abstract:
An acoustically permeable material is disposed within an aperture of an electronic device to provide aesthetic appeal for the electronic device and protection for an acoustic device mounted within the electronic device. A stiffener is used in conjunction with the acoustically permeable material to improve its ability to resist permanent mechanical deformation from external forces. In some embodiments the stiffener may have multiple cavities enabling improved isolation between multiple acoustic devices within the same aperture. Other methods of employing acoustically permeable materials are disclosed that improve the aesthetic appeal, acoustic performance and/or manufacturability of the electronic device.
Abstract:
This application relates to various button related embodiments for use with a portable electronic device. In some embodiments, a snap clip can be integrated with a button bracket to save space where two separate brackets would take up too much space in the portable electronic device. In other embodiments, a tactile switch can be waterproofed by welding a polymeric layer atop a tactile switch assembly. In this way water can be prevented from contacting moisture sensitive components of the tactile switch assembly. The weld joining the polymeric layer to the tactile switch can include at least one gap to trapped gas surrounding the tactile switch assembly to enter and exit during heat excursions caused by various operating and/or assembly operations.
Abstract:
The embodiments discussed herein relate to electrical switches. Specifically, the embodiments include a pivoting switch that translates a rotational movement of a portion of the pivoting switch into a linear movement for toggling a button. The pivoting switch can include a pin that extends into a bracket in order to define and limit a rotational movement of the pivoting switch. The pivoting switch can further include a switch cavity that can force a knob of the button to move with the pivoting switch. The embodiments can further include an electrical switch having a welded cover plate. The welded cover plate can include arms that extend across and are welded to one or more surfaces of the electrical switch. The welded cover plate provides a more secure retaining mechanism for the electrical switch in order to reduce bending of certain portions of the electrical switch when the electrical switch is toggled.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3-dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3-dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.