Abstract:
Method for reducing dopant contamination during the fabrication of semiconductor devices is provided. The method includes doping a first layer, such as a polysilicon layer. During a subsequent annealing process, a gas, such as nitrogen, oxygen, a combination thereof, or the like, is introduced. The gas causes a cap layer to be formed over the first layer, preventing or reducing out-diffusing of the dopants and contamination of the process chamber. In a preferred embodiment, the gas is introduced during the ramp-up stage of the annealing process. The cap layer may be removed prior to etching the first layer.
Abstract:
A method of fabricating a tunneling photodiode is presented comprised of the following steps: forming a p-well in an n-type substrate, forming a thin insulating layer over the surface of the p-type material, and then forming a thin n-type layer over the insulating layer. Preferably, the n and p type semiconductor material could be silicon and the insulating layer could be between about 30 to 40 angstroms of gate quality silicon dioxide. In other embodiments of the invention the materials of either electrode are either n or p-type semiconductors or metals.
Abstract:
The invention teaches the creation of borderless contact holes by using multiple layers of overlying dielectric, having different, interdependent etch rates, that function as etch stop layers for the creation of the borderless contact holes through a layer of overlying dielectric.
Abstract:
A process for preparing a surface of a lower level metal structure, exposed at the bottom of a sub-micron diameter opening, to allow a low resistance interface to be obtained when overlaid with an upper level metal structure, has been developed. A disposable, capping insulator layer is first deposited on the composite insulator layer in which the sub-micron diameter opening will be defined in, to protect underlying components of the composite insulator from a subsequent metal pre-metal procedure. After anisotropically defining the sub-micron diameter opening in the capping insulator, and composite insulator layers, and after removal of the defining photoresist shape, an argon sputtering procedure is used to remove native oxide from the surface of the lower level metal structure. In addition to native oxide removal the argon sputtering procedure, featuring a negative DC bias applied to the substrate, also removes the capping insulator layer from the top surface of the composite insulator layer. An in situ metal deposition then allows a clean interface to result between the overlying metal layer, and the underlying plasma treated, metal surface.
Abstract:
A method is disclosed for improving the ESD protection of gate oxide in ultra large scale integrated circuits of 0.35 .mu.m technology or less, approaching 0.25 .mu.m. This is accomplished by providing a silicon substrate and forming thereon product FET device circuits and ESD protection device circuits. In forming the ESD source/drain regions, the implantation species is changed from phosphorous to boron, thereby reducing junction breakdown voltage. Ion implantation is performed judiciously in areas with high leakage and capacitance. Hence improvement is accomplished though reduced breakdown voltage, as well as through reduced leakage and capacitance of the junction. Furthermore, ion implantation is performed using a photoresist mask prior to the formation of silicidation over the contact area. This avoids the problem of silicide degradation and the concomitant increase in contact resistance through the transportation of metal ions into depletion region of junction during high energy ESD implantation.
Abstract:
The present invention is a method of protecting an alignment mark in semiconductor manufacturing process with CMP. This invention utilizes a via mask or masking blade to remove the intermetal dielectric layer on a wide clear -out window using two etching steps. One etching step is performed before intermetal dielectric layer polish. The other etching step is performed after intermetal dielectric layer polish. Thus, there is no intermetal dielectric layer remained on the alignment mark and the alignment mark keeps the original shape.
Abstract:
An integrated circuit includes a substrate having a bonding pad region and a non-bonding pad region. A relatively large via, called a “big via,” is formed on the substrate in the bonding region. The big via has a first dimension in a top view toward the substrate. The integrated circuit also includes a plurality of vias formed on the substrate in the non-bonding region. The plurality of vias each have a second dimension in the top view, the second dimension being substantially less than the first dimension.
Abstract:
Within an option selection device structure and a method for fabrication thereof there is formed a terminal metal layer and an option selection device at a co-planar level over a microelectronic substrate. The option selection device is passivated with: (1) a terminal metal passivation layer having an etch stop layer within its thickness; and (2) a bond pad passivation layer. There is simultaneously also formed through the bond pad passivation layer: (1) a via which accesses a bond pad formed contacting the terminal metal layer; and (2) an aperture over the option selection device which stops at the etch stop layer.
Abstract:
A structure and a process for manufacturing semiconductor devices with improved ESD protection for high voltage applications is described. A thick field gate oxide N channel field effect transistor (FET) device with a tunable threshold voltage (Vt) is developed at the input/output to the internal active circuits for the purpose of providing ESD protection for applications in the 9 volt and higher range. The FET threshold voltage determines the ESD protection characteristics. A N-field implant is used to provide a dopant region under the thick oxide gate element which has the effect of modifying the threshold voltage (Vt) of this device enabling the device turn-on to be “tuned” to more closely match the application requirements of the internal semiconductor circuits. The gate electrical contact is completed by using either a metal gate electrode or polysilicon gate element. The gate and drain of the thick oxide FET device are connected to the input/output connection pad of the internal semiconductor circuits which also enhances ESD protection. The FET source element is connected to another voltage source, typically ground, providing a path to shunt the current from an ESD incident thereby protecting the internal circuitry from damage.
Abstract:
A method including the step of forming contact pads on a semiconductor wafer. A passivation blanket is deposited over the semiconductor wafer and the contact pads. The passivation blanket includes three layers. A first layer of silicon dioxide is deposited over the semiconductor wafer and the contact pads. A second layer of silicon nitride is deposited over the first layer, and a third layer and final layer of silicon dioxide is deposited over the second layer. The passivated semiconductor wafer is planarized using an oxide chemical mechanical planarization method. Holes are opened in the passivation blanket down to the contact pads. An under bump metallurgy is deposited onto the contact pads and a portion of the final silicon dioxide layer. Solder is deposited onto the under bump metallurgy and reflown to form a flip chip having solder bumps.