Abstract:
An ion implantation apparatus having a plasma source for generating ions, an ion accelerator for accelerating the generated ions, and a substrate holder provided on a position which the accelerated ions irradiate, wherein a current density of a desired kind of ions is measured by an electromagnetic ion energy analyzer having an electric field and a magnetic field, thereby controlling a dose of the ions.
Abstract:
A compact high current broad beam ion implanter capable of serial processing employs a high current density source, an analyzing magnet to direct a desired species through a resolving slit, and a second magnet to deflect the resultant beam while rendering it parallel and uniform along its width dimension. Both magnets have relatively large pole gaps, wide input and output faces, and deflect through a small radius of curvature to produce a beam free of instabilities. Multipole elements incorporated within at least one magnet allow higher order aberrations to be selectively varied to locally adjust beam current density and achieve the high degree of uniformity along the beam width dimension.
Abstract:
There is disclosed a direct imaging type SIMS (secondary ion mass spectrometry) instrument having a mass analyzer comprising superimposed fields. The superimposed fields consist of a toroidal electric field and a uniform magnetic field substantially perpendicular to the electric field. In said electric field, the central orbit of the ion beam is located in an equipotential plane. The mass analyzer causes an image of the region on the sample bombarded with a primary beam to be focused onto a two-dimensional detector to form a mass-filtered ion image. The SIMS instrument can operate in a mode where only the intensity of the magnetic field of the mass analyzer is set equal to zero. In this mode, only ions having a selected energy within a certain energy bandwidth produce an image, that is, an energy-filtered ion image is formed.
Abstract:
A system for implanting ions into a target element including a source arrangement for producing an ion beam; a beam analyzing arrangement for receiving the ion beam and selectively separating various ion species in the beam on the basis of mass to produce an analyzed beam; and a beam resolving arrangement disposed in the path of the analyzed beam for permitting a preselected ion species to pass to the target element. The analyzing arrangement has an ion dispersion plane associated therewith. The source arrangement has an associated ion emitting envelope including an area of substantial extension in a plane parallel to the ion dispersion plane and producing ions entering said analyzing arrangement which are travelling substantially either toward or from a common apparent line object lying in a plane perpendicular to the ion dispersion plane.
Abstract:
High energy resolution at high electron current at the specimen or at the detector is obtained by an electron beam guiding with focusing energy selection, in particular in an electron spectrometer with emission system and at least one energy dispersive system with different focusing in two mutually perpendicular directions, by a non-circular-symmetrical lens system placed after or before the energy dispersive system and correcting the different focusing of the electrons in the two mutually perpendicular directions such that either the virtual or the real entry stop of the energy dispersive system is imaged on an accessible image plane outside the energy dispersive system or an object outside the energy dispersive system is imaged on the virtual or real exit stop of the latter.
Abstract:
An ion implantation apparatus which is suited for manufacturing semiconductor devices and which is particularly suited for implanting double charged ions into the wafers 22. Ions of a predetermined mass only are selected by a mass-separating electromagnet 14 from an ion beam 12 that is emitted from an ion source 10, and are implanted into the wafer 22 via a slit 16. Between the slit 16 and the mass-separating electromagnet, there are provided field electrodes 24 having a direction of deflection which is the same as that of the mass-separating electromagnet 14 to separate ions having different energy levels, and deflection magnets 26 having a direction of deflection at right angles with the direction of deflection of the mass-separating electromagnet. The slit 16 is arranged so that undeflected neutral particles and low energy ions deflected by the field electrodes 24 will pass through the slit while high energy ions will be deflected the proper amount to pass through the slit. Correction means 32 can be located between the slit and the wafer to ensure that the beam passing through the slit strikes the wafer at the proper angle.
Abstract:
A spherical grid for use in instrumentation comprising a rigid non-magnetic frame having a pattern of holes. Into each hole a flat wafer is placed, each wafer having etched therein holes defining the grid mesh. The frame maintains the geometric conformal shape allowing large units to be constructed.
Abstract:
Focused ion beam microfabrication column (10) produces an ion beam from ion source (12), focuses the beam by objective lens (24) onto the plane of electrode (36). ExB filter (44) separates out the ion species at a low energy portion of the beam. The beam of selected species is first accelerated by energy central lens (38) which has a controllable potential for controlling the final beam energy to the target. The beam is accelerated by final accelerator lens (54) and is demagnified and focused on the target by that lens. Beam deflector (64) deflects the beam for programmed ion beam work on the target (60).
Abstract:
A monochromator for charged particles comprises a premonochromator and a main monochromator is tandem with a retarding lens disposed therebetween. The arrangement is suitable for electron energy loss spectrometry due to the high achievable intensities.
Abstract:
A stigmatic, crossed-field velocity filter for nondeflection purification of an ion beam employs shaped electrodes to increase the uniformity of the electric field and employs shaped magnetic pole pieces to produce a nonuniform magnetic field for stigmatic passage of the selected ion species through the filter.